Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
PLoS Pathog ; 16(3): e1008412, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32226041

RESUMEN

Bats are the natural reservoir host for a number of zoonotic viruses, including Hendra virus (HeV) which causes severe clinical disease in humans and other susceptible hosts. Our understanding of the ability of bats to avoid clinical disease following infection with viruses such as HeV has come predominantly from in vitro studies focusing on innate immunity. Information on the early host response to infection in vivo is lacking and there is no comparative data on responses in bats compared with animals that succumb to disease. In this study, we examined the sites of HeV replication and the immune response of infected Australian black flying foxes and ferrets at 12, 36 and 60 hours post exposure (hpe). Viral antigen was detected at 60 hpe in bats and was confined to the lungs whereas in ferrets there was evidence of widespread viral RNA and antigen by 60 hpe. The mRNA expression of IFNs revealed antagonism of type I and III IFNs and a significant increase in the chemokine, CXCL10, in bat lung and spleen following infection. In ferrets, there was an increase in the transcription of IFN in the spleen following infection. Liquid chromatography tandem mass spectrometry (LC-MS/MS) on lung tissue from bats and ferrets was performed at 0 and 60 hpe to obtain a global overview of viral and host protein expression. Gene Ontology (GO) enrichment analysis of immune pathways revealed that six pathways, including a number involved in cell mediated immunity were more likely to be upregulated in bat lung compared to ferrets. GO analysis also revealed enrichment of the type I IFN signaling pathway in bats and ferrets. This study contributes important comparative data on differences in the dissemination of HeV and the first to provide comparative data on the activation of immune pathways in bats and ferrets in vivo following infection.


Asunto(s)
Antígenos Virales/inmunología , Virus Hendra/inmunología , Infecciones por Henipavirus/inmunología , Inmunidad Celular , Inmunidad Innata , Pulmón/inmunología , Modelos Inmunológicos , Animales , Antígenos Virales/genética , Quimiocina CXCL10/genética , Quimiocina CXCL10/inmunología , Quirópteros , Hurones , Virus Hendra/genética , Infecciones por Henipavirus/genética , Infecciones por Henipavirus/patología , Interferones/genética , Interferones/inmunología , Pulmón/patología , Pulmón/virología , Especificidad de la Especie
2.
J Virol ; 91(23)2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28931675

RESUMEN

Ebolavirus and Marburgvirus comprise two genera of negative-sense single-stranded RNA viruses that cause severe hemorrhagic fevers in humans. Despite considerable research efforts, the molecular events following Ebola virus (EBOV) infection are poorly understood. With the view of identifying host factors that underpin EBOV pathogenesis, we compared the transcriptomes of EBOV-infected human, pig, and bat kidney cells using a transcriptome sequencing (RNA-seq) approach. Despite a significant difference in viral transcription/replication between the cell lines, all cells responded to EBOV infection through a robust induction of extracellular growth factors. Furthermore, a significant upregulation of activator protein 1 (AP1) transcription factor complex members FOS and JUN was observed in permissive cell lines. Functional studies focusing on human cells showed that EBOV infection induces protein expression, phosphorylation, and nuclear accumulation of JUN and, to a lesser degree, FOS. Using a luciferase-based reporter, we show that EBOV infection induces AP1 transactivation activity within human cells at 48 and 72 h postinfection. Finally, we show that JUN knockdown decreases the expression of EBOV-induced host gene expression. Taken together, our study highlights the role of AP1 in promoting the host gene expression profile that defines EBOV pathogenesis.IMPORTANCE Many questions remain about the molecular events that underpin filovirus pathophysiology. The rational design of new intervention strategies, such as postexposure therapeutics, will be significantly enhanced through an in-depth understanding of these molecular events. We believe that new insights into the molecular pathogenesis of EBOV may be possible by examining the transcriptomic response of taxonomically diverse cell lines (derived from human, pig, and bat). We first identified the responsive pathways using an RNA-seq-based transcriptomics approach. Further functional and computational analysis focusing on human cells highlighted an important role for the AP1 transcription factor in mediating the transcriptional response to EBOV infection. Our study sheds new light on how host transcription factors respond to and promote the transcriptional landscape that follows viral infection.


Asunto(s)
Perfilación de la Expresión Génica , Fiebre Hemorrágica Ebola/virología , Interacciones Huésped-Patógeno , Factor de Transcripción AP-1/metabolismo , Animales , Línea Celular , Quirópteros , Ebolavirus/patogenicidad , Genes fos , Genes jun , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Riñón/citología , Riñón/virología , Fosforilación , Porcinos , Factor de Transcripción AP-1/genética , Proteínas Virales , Replicación Viral
3.
PLoS Pathog ; 12(10): e1005974, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27783670

RESUMEN

Hendra and Nipah viruses (family Paramyxoviridae, genus Henipavirus) are bat-borne viruses that cause fatal disease in humans and a range of other mammalian species. Gaining a deeper understanding of host pathways exploited by henipaviruses for infection may identify targets for new anti-viral therapies. Here we have performed genome-wide high-throughput agonist and antagonist screens at biosafety level 4 to identify host-encoded microRNAs (miRNAs) impacting henipavirus infection in human cells. Members of the miR-181 and miR-17~93 families strongly promoted Hendra virus infection. miR-181 also promoted Nipah virus infection, but did not affect infection by paramyxoviruses from other genera, indicating specificity in the virus-host interaction. Infection promotion was primarily mediated via the ability of miR-181 to significantly enhance henipavirus-induced membrane fusion. Cell signalling receptors of ephrins, namely EphA5 and EphA7, were identified as novel negative regulators of henipavirus fusion. The expression of these receptors, as well as EphB4, were suppressed by miR-181 overexpression, suggesting that simultaneous inhibition of several Ephs by the miRNA contributes to enhanced infection and fusion. Immune-responsive miR-181 levels was also up-regulated in the biofluids of ferrets and horses infected with Hendra virus, suggesting that the host innate immune response may promote henipavirus spread and exacerbate disease severity. This study is the first genome-wide screen of miRNAs influencing infection by a clinically significant mononegavirus and nominates select miRNAs as targets for future anti-viral therapy development.


Asunto(s)
Infecciones por Henipavirus/genética , MicroARNs/genética , Internalización del Virus , Animales , Hurones , Técnica del Anticuerpo Fluorescente , Estudio de Asociación del Genoma Completo , Henipavirus , Secuenciación de Nucleótidos de Alto Rendimiento , Caballos , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
J Neurochem ; 129(4): 614-27, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24484474

RESUMEN

Suppressor of cytokine signaling-2 (SOCS2) is a regulator of intracellular responses to growth factors and cytokines. Cultured dorsal root ganglia neurons from neonatal mice with increased or decreased SOCS2 expression were examined for altered responsiveness to nerve growth factor (NGF). In the presence of NGF, SOCS2 over-expression increased neurite length and complexity, whereas loss of SOCS2 reduced neurite outgrowth. Neither loss nor gain of SOCS2 expression altered the relative survival of these cells, suggesting that SOCS2 can discriminate between the differentiation and survival responses to NGF. Interaction studies in 293T cells revealed that SOCS2 immunoprecipitates with TrkA and a juxtamembrane motif of TrkA was required for this interaction. SOCS2 also immunoprecipitated with endogenous TrkA in PC12 Tet-On cells. Over-expression of SOCS2 in PC12 Tet-On cells increased total and surface TrkA expression. In contrast, dorsal root ganglion neurons which over-expressed SOCS2 did not exhibit significant changes in total levels but an increase in surface TrkA was noted. SOCS2-induced neurite outgrowth in PC12 Tet-On cells correlated with increased and prolonged activation of pAKT and pErk1/2 and required an intact SOCS2 SH2 domain and SOCS box domain. This study highlights a novel role for SOCS2 in the regulation of TrkA signaling and biology.


Asunto(s)
Receptor trkA/biosíntesis , Proteínas Supresoras de la Señalización de Citocinas/fisiología , Animales , Membrana Celular/metabolismo , Células Cultivadas , Ganglios Espinales/citología , Ratones , Ratones Endogámicos C57BL , Factor de Crecimiento Nervioso/fisiología , Neuritas/ultraestructura , Neurogénesis/fisiología , Neuronas/metabolismo , Células PC12 , Ratas , Receptor trkA/química , Receptor trkA/genética , Transducción de Señal/fisiología , Proteínas Supresoras de la Señalización de Citocinas/química
6.
Emerg Infect Dis ; 20(3): 372-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24572697

RESUMEN

In recent years, the emergence of several highly pathogenic zoonotic diseases in humans has led to a renewed emphasis on the interconnectedness of human, animal, and environmental health, otherwise known as One Health. For example, Hendra virus (HeV), a zoonotic paramyxovirus, was discovered in 1994, and since then, infections have occurred in 7 humans, each of whom had a strong epidemiologic link to similarly affected horses. As a consequence of these outbreaks, eradication of bat populations was discussed, despite their crucial environmental roles in pollination and reduction of the insect population. We describe the development and evaluation of a vaccine for horses with the potential for breaking the chain of HeV transmission from bats to horses to humans, thereby protecting horse, human, and environmental health. The HeV vaccine for horses is a key example of a One Health approach to the control of human disease.


Asunto(s)
Salud Ambiental , Virus Hendra/inmunología , Infecciones por Henipavirus/prevención & control , Enfermedades de los Caballos/prevención & control , Vacunas Virales/inmunología , Zoonosis/prevención & control , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Femenino , Hurones , Cobayas , Virus Hendra/genética , Enfermedades de los Caballos/patología , Enfermedades de los Caballos/virología , Caballos , Humanos , Inmunización , Pruebas de Neutralización , Zoonosis/patología , Zoonosis/virología
7.
Virol J ; 11: 200, 2014 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-25428656

RESUMEN

BACKGROUND: Hendra virus (HeV) is a pleomorphic virus belonging to the Paramyxovirus family. Our long-term aim is to understand the process of assembly of HeV virions. As a first step, we sought to determine the most appropriate cell culture system with which to study this process, and then to use this model to define the morphology of the virus and identify the site of assembly by imaging key virus encoded proteins in infected cells. METHODS: A range of primary cells and immortalised cell lines were infected with HeV, fixed at various time points post-infection, labelled for HeV proteins and imaged by confocal, super-resolution and transmission electron microscopy. RESULTS: Significant differences were noted in viral protein distribution depending on the infected cell type. At 8 hpi HeV G protein was detected in the endoplasmic reticulum and M protein was seen predominantly in the nucleus in all cells tested. At 18 hpi, HeV-infected Vero cells showed M and G proteins throughout the cell and in transmission electron microscope (TEM) sections, in pleomorphic virus-like structures. In HeV infected MDBK, A549 and HeLa cells, HeV M protein was seen predominantly in the nucleus with G protein at the membrane. In HeV-infected primary bovine and porcine aortic endothelial cells and two bat-derived cell lines, HeV M protein was not seen at such high levels in the nucleus at any time point tested (8,12, 18, 24, 48 hpi) but was observed predominantly at the cell surface in a punctate pattern co-localised with G protein. These HeV M and G positive structures were confirmed as round HeV virions by TEM and super-resolution (SR) microscopy. SR imaging demonstrated for the first time sub-virion imaging of paramyxovirus proteins and the respective localisation of HeV G, M and N proteins within virions. CONCLUSION: These findings provide novel insights into the structure of HeV and show that for HeV imaging studies the choice of tissue culture cells may affect the experimental results. The results also indicate that HeV should be considered a predominantly round virus with a mean diameter of approximately 280 nm by TEM and 310 nm by SR imaging.


Asunto(s)
Virus Hendra/fisiología , Virus Hendra/ultraestructura , Ensamble de Virus , Animales , Línea Celular , Humanos , Microscopía , Imagen Óptica
8.
Virol J ; 10: 237, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23867060

RESUMEN

BACKGROUND: Nipah virus (NiV) is a zoonotic virus belonging to the henipavirus genus in the family Paramyxoviridae. Since NiV was first identified in 1999, outbreaks have continued to occur in humans in Bangladesh and India on an almost annual basis with case fatality rates reported between 40% and 100%. METHODS: Ferrets were vaccinated with 4, 20 or 100 µg HeVsG formulated with the human use approved adjuvant, CpG, in a prime-boost regime. One half of the ferrets were exposed to NiV at 20 days post boost vaccination and the other at 434 days post vaccination. The presence of virus or viral genome was assessed in ferret fluids and tissues using real-time PCR, virus isolation, histopathology, and immunohistochemistry; serology was also carried out. Non-immunised ferrets were also exposed to virus to confirm the pathogenicity of the inoculum. RESULTS: Ferrets exposed to Nipah virus 20 days post vaccination remained clinically healthy. Virus or viral genome was not detected in any tissues or fluids of the vaccinated ferrets; lesions and antigen were not identified on immunohistological examination of tissues; and there was no increase in antibody titre during the observation period, consistent with failure of virus replication. Of the ferrets challenged 434 days post vaccination, all five remained well throughout the study period; viral genome - but not virus - was recovered from nasal secretions of one ferret given 20 µg HeVsG and bronchial lymph nodes of the other. There was no increase in antibody titre during the observation period, consistent with lack of stimulation of a humoral memory response. CONCLUSIONS: We have previously shown that ferrets vaccinated with 4, 20 or 100 µg HeVsG formulated with CpG adjuvant, which is currently in several human clinical trials, were protected from HeV disease. Here we show, under similar conditions of use, that the vaccine also provides protection against NiV-induced disease. Such protection persists for at least 12 months post-vaccination, with data supporting only localised and self-limiting virus replication in 2 of 5 animals. These results augur well for acceptability of the vaccine to industry.


Asunto(s)
Infecciones por Henipavirus/prevención & control , Virus Nipah/inmunología , Proteínas Estructurales Virales/inmunología , Vacunas Virales/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Estructuras Animales/patología , Estructuras Animales/virología , Animales , Anticuerpos Antivirales/sangre , Líquidos Corporales/virología , Modelos Animales de Enfermedad , Hurones , Infecciones por Henipavirus/inmunología , Infecciones por Henipavirus/patología , Infecciones por Henipavirus/virología , Masculino , Virus Nipah/genética , Oligodesoxirribonucleótidos/administración & dosificación , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Proteínas Estructurales Virales/genética , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
9.
J Immunol ; 186(5): 3138-47, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21278349

RESUMEN

Bats are known to harbor a number of emerging and re-emerging zoonotic viruses, many of which are highly pathogenic in other mammals but result in no clinical symptoms in bats. The ability of bats to coexist with viruses may be the result of rapid control of viral replication early in the immune response. IFNs provide the first line of defense against viral infection in vertebrates. Type III IFNs (IFN-λs) are a recently identified IFN family that share similar antiviral activities with type I IFNs. To our knowledge, we demonstrate the first functional analysis of type III IFNs from any species of bat, with the investigation of two IFN-λ genes from the pteropid bat, Pteropus alecto. Our results demonstrate that bat type III IFN has similar antiviral activity to type I and III IFNs from other mammals. In addition, the two bat type III IFNs are differentially induced relative to each other and to type I IFNs after treatment or transfection with synthetic dsRNA. Infection with the bat paramyxovirus, Tioman virus, resulted in no upregulation of type I IFN production in bat splenocytes but was capable of inducing a type III IFN response in three of the four bats tested. To our knowledge, this is the first report to describe the simultaneous suppression of type I IFN and induction of type III IFN after virus infection. These results may have important implications for the role of type III IFNs in the ability of bats to coexist with viruses.


Asunto(s)
Quirópteros/inmunología , Quirópteros/virología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata , Interleucinas/biosíntesis , Interleucinas/genética , Animales , Antivirales/metabolismo , Antivirales/farmacología , Línea Celular , Línea Celular Transformada , Quirópteros/genética , Chlorocebus aethiops , Humanos , Interferón Tipo I/biosíntesis , Interferón Tipo I/metabolismo , Interferón Tipo I/fisiología , Interleucinas/fisiología , Ratones , Modelos Animales , Datos de Secuencia Molecular , Orthoreovirus de los Mamíferos/inmunología , Orthoreovirus de los Mamíferos/metabolismo , Infecciones por Paramyxoviridae/inmunología , Infecciones por Paramyxoviridae/metabolismo , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/metabolismo , Células Vero
10.
J Virol ; 83(22): 11979-82, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19759137

RESUMEN

Hendra virus and Nipah virus, two zoonotic paramyxoviruses in the genus Henipavirus, have recently emerged and continue to cause sporadic disease outbreaks in humans and animals. Mortality rates of up to 75% have been reported in humans, but there are presently no clinically licensed therapeutics for treating henipavirus-induced disease. A recent report indicated that chloroquine, used in malaria therapy for over 70 years, prevented infection with Nipah virus in vitro. Chloroquine was assessed using a ferret model of lethal Nipah virus infection and found to be ineffective against Nipah virus infection in vivo.


Asunto(s)
Antivirales/uso terapéutico , Cloroquina/uso terapéutico , Hurones/virología , Infecciones por Henipavirus/tratamiento farmacológico , Virus Nipah/efectos de los fármacos , Enfermedades de los Animales/tratamiento farmacológico , Enfermedades de los Animales/virología , Animales , Antivirales/farmacología , Cloroquina/farmacocinética , Cloroquina/farmacología , Hurones/metabolismo , Humanos , ARN Viral/metabolismo
11.
Lancet Infect Dis ; 20(4): 445-454, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32027842

RESUMEN

BACKGROUND: The monoclonal antibody m102.4 is a potent, fully human antibody that neutralises Hendra and Nipah viruses in vitro and in vivo. We aimed to investigate the safety, tolerability, pharmacokinetics, and immunogenicity of m102.4 in healthy adults. METHODS: In this double-blind, placebo-controlled, single-centre, dose-escalation, phase 1 trial of m102.4, we randomly assigned healthy adults aged 18-50 years with a body-mass index of 18·0-35·0 kg/m2 to one of five cohorts. A sentinel pair for each cohort was randomly assigned to either m102.4 or placebo. The remaining participants in each cohort were randomly assigned (5:1) to receive m102.4 or placebo. Cohorts 1-4 received a single intravenous infusion of m102.4 at doses of 1 mg/kg (cohort 1), 3 mg/kg (cohort 2), 10 mg/kg (cohort 3), and 20 mg/kg (cohort 4), and were monitored for 113 days. Cohort 5 received two infusions of 20 mg/kg 72 h apart and were monitored for 123 days. The primary outcomes were safety and tolerability. Secondary outcomes were pharmacokinetics and immunogenicity. Analyses were completed according to protocol. The study was registered on the Australian New Zealand Clinical Trials Registry, ACTRN12615000395538. FINDINGS: Between March 27, 2015, and June 16, 2016, 40 (52%) of 77 healthy screened adults were enrolled in the study. Eight participants were assigned to each cohort (six received m102.4 and two received placebo). 86 treatment-emergent adverse events were reported, with similar rates between placebo and treatment groups. The most common treatment-related event was headache (12 [40%] of 30 participants in the combined m102.4 group, and three [30%] of ten participants in the pooled placebo group). No deaths or severe adverse events leading to study discontinuation occurred. Pharmacokinetics based on those receiving m102.4 (n=30) were linear, with a median half-life of 663·3 h (range 474·3-735·1) for cohort 1, 466·3 h (382·8-522·3) for cohort 2, 397·0 h (333·9-491·8) for cohort 3, and 466·7 h (351·0-889·6) for cohort 4. The elimination kinetics of those receiving repeated dosing (cohort 5) were similar to those of single-dose recipients (median elimination half-time 472·0 [385·6-592·0]). Anti-m102.4 antibodies were not detected at any time-point during the study. INTERPRETATION: Single and repeated dosing of m102.4 were well tolerated and safe, displayed linear pharmacokinetics, and showed no evidence of an immunogenic response. This study will inform future dosing regimens for m102.4 to achieve prolonged exposure for systemic efficacy to prevent and treat henipavirus infections. FUNDING: Queensland Department of Health, the National Health and Medical Research Council, and the National Hendra Virus Research Program.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacocinética , Glicoproteínas/inmunología , Voluntarios Sanos , Henipavirus/inmunología , Inmunogenicidad Vacunal , Seguridad , Adulto , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/inmunología , Australia , Método Doble Ciego , Femenino , Cefalea/etiología , Humanos , Infusiones Intravenosas , Masculino
12.
BMC Neurosci ; 8: 61, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-17672914

RESUMEN

BACKGROUND: Many commonly used chemotherapeutic agents, such as Cisplatin, are restricted in their potential anti-neoplastic effectiveness by their side effects, with one of the most problematic being induction of peripheral neuropathy. Although a number of different neurotrophic, neuroprotective or anti-oxidant treatments have been tried in order to prevent or treat the neuropathies, to date they have met with limited success. Phenoxodiol is a new chemotherapeutic agent that has anti-proliferative and apoptotic effects on a range of cancer cells. PC12 cells are a commonly used neuronal cell model for examination of neurite outgrowth. In this study we examined whether phenoxodiol could protect against Cisplatin induced neurite inhibition in PC12 cells as an indication of the potential to protect against neuropathy. RESULTS: Using the PC12 neuronal cell line, concentrations of Cisplatin were chosen that induced moderate or strong neurite toxicity within 24 hrs but were not cytotoxic. The effect of Phenoxodiol on Cisplatin induced neurite toxicity was assessed by measurement of neurite outgrowth. Addition of phenoxodiol at 100 nM or 1 microM showed no cytotoxicity and blocked the Cisplatin induced neurite toxicity, while phenoxodiol at 10 microM was cytotoxic and enhanced neurite toxicity of Cisplatin. When Cisplatin was added for 24 hrs, then washed out and the cells allowed to recover for 48 hrs, neurite outgrowth was not restored and addition of phenoxodiol did not further promote recovery or restore the Cisplatin treated cells. CONCLUSION: In addition to its potential as a chemotherapeutic agent Phenoxodiol may thus also have the potential to be used in conjunction with Cisplatin chemotherapy to prevent induction of neuropathy.


Asunto(s)
Cisplatino/antagonistas & inhibidores , Isoflavonas/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Animales , Antineoplásicos/antagonistas & inhibidores , Antineoplásicos/toxicidad , Cisplatino/toxicidad , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas/fisiología , Isoflavonas/uso terapéutico , Neuritas/efectos de los fármacos , Neuronas/fisiología , Fármacos Neuroprotectores/uso terapéutico , Neurotoxinas/antagonistas & inhibidores , Neurotoxinas/toxicidad , Células PC12 , Nervios Periféricos/efectos de los fármacos , Nervios Periféricos/patología , Nervios Periféricos/fisiopatología , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/prevención & control , Ratas , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología
13.
Genome Biol ; 15(11): 532, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25398248

RESUMEN

BACKGROUND: Bats are a major reservoir of emerging infectious viruses. Many of these viruses are highly pathogenic to humans however bats remain asymptomatic. The mechanism by which bats control viral replication is unknown. Here we utilize an integrated approach of proteomics informed by transcriptomics to compare the response of immortalized bat and human cells following infection with the highly pathogenic bat-borne Hendra virus (HeV). RESULTS: The host response between the cell lines was significantly different at both the mRNA and protein levels. Human cells demonstrated minimal response eight hours post infection, followed by a global suppression of mRNA and protein abundance. Bat cells demonstrated a robust immune response eight hours post infection, which led to the up-regulation of apoptosis pathways, mediated through the tumor necrosis factor-related apoptosis inducing ligand (TRAIL). HeV sensitized bat cells to TRAIL-mediated apoptosis, by up-regulating death receptor transcripts. At 48 and 72 hours post infection, bat cells demonstrated a significant increase in apoptotic cell death. CONCLUSIONS: This is the first study to comprehensively compare the response of bat and human cells to a highly pathogenic zoonotic virus. An early induction of innate immune processes followed by apoptosis of virally infected bat cells highlights the possible involvement of programmed cell death in the host response. Our study shows for the first time a side-by-side high-throughput analysis of a dangerous zoonotic virus in cell lines derived from humans and the natural bat host. This enables a way to search for divergent mechanisms at a molecular level that may influence host pathogenesis.


Asunto(s)
Virus Hendra/genética , Infecciones por Henipavirus/genética , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Transcriptoma/genética , Animales , Apoptosis/genética , Quirópteros/genética , Quirópteros/virología , Virus Hendra/patogenicidad , Infecciones por Henipavirus/transmisión , Infecciones por Henipavirus/virología , Interacciones Huésped-Patógeno/genética , Humanos , Proteómica , Replicación Viral/genética
14.
Vaccine ; 29(34): 5623-30, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21689706

RESUMEN

The henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), are two deadly zoonotic viruses for which no vaccines or therapeutics have yet been approved for human or livestock use. In 14 outbreaks since 1994 HeV has been responsible for multiple fatalities in horses and humans, with all known human infections resulting from close contact with infected horses. A vaccine that prevents virus shedding in infected horses could interrupt the chain of transmission to humans and therefore prevent HeV disease in both. Here we characterise HeV infection in a ferret model and show that it closely mirrors the disease seen in humans and horses with induction of systemic vasculitis, including involvement of the pulmonary and central nervous systems. This model of HeV infection in the ferret was used to assess the immunogenicity and protective efficacy of a subunit vaccine based on a recombinant soluble version of the HeV attachment glycoprotein G (HeVsG), adjuvanted with CpG. We report that ferrets vaccinated with a 100 µg, 20 µg or 4 µg dose of HeVsG remained free of clinical signs of HeV infection following a challenge with 5000 TCID50 of HeV. In addition, and of considerable importance, no evidence of virus or viral genome was detected in any tissues or body fluids in any ferret in the 100 and 20 µg groups, while genome was detected in the nasal washes only of one animal in the 4 µg group. Together, our findings indicate that 100 µg or 20 µg doses of HeVsG vaccine can completely prevent a productive HeV infection in the ferret, suggesting that vaccination to prevent the infection and shedding of HeV is possible.


Asunto(s)
Virus Hendra/inmunología , Vacunas de Subunidad/inmunología , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Hurones/inmunología , Hurones/virología , Glicoproteínas/inmunología , Infecciones por Henipavirus/inmunología , Infecciones por Henipavirus/prevención & control , Proteínas Recombinantes/inmunología , Vacunas Sintéticas/inmunología , Esparcimiento de Virus/inmunología
15.
Pathol Int ; 56(5): 246-55, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16669873

RESUMEN

Rhabdomyosarcomas (RMS) are highly aggressive tumors that are thought to arise as a consequence of the regulatory disruption of the growth and differentiation of skeletal muscle progenitor cells. Normal myogenesis is characterized by the expression of the myogenic regulatory factor gene family but, despite their expression in RMS, these tumor cells fail to complete the latter stages of myogenesis. The RMS cell line RD-A was treated with 12-O-tetradecanoylphorbol-13-acetate to induce differentiation and cultured for 10 days. RNA was extracted on days 1, 3, 6, 8 and 10. A human skeletal muscle cDNA microarray was developed and used to analyze the global gene expression of RMS tumors over the time-course of differentiation. As a comparison, the genes identified were subsequently examined during the differentiated primary human skeletal muscle cultures. Prothymosin alpha (PTMA), and translocase of inner mitochondrial membrane 10 (Tim10), two genes not previously implicated in RMS, showed reduced expression during differentiation. Marked differences in the expression of PTMA and Tim10 were observed during the differentiation of human primary skeletal muscle cells. These results identify several new genes with potential roles in the myogenic arrest present in rhabdomyosarcoma. PTMA expression in RMS biopsy samples might prove to be an effective diagnostic marker for this disease.


Asunto(s)
Transformación Celular Neoplásica/genética , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Rabdomiosarcoma/genética , Neoplasias de los Tejidos Blandos/genética , Adulto , Línea Celular Tumoral/efectos de los fármacos , Línea Celular Tumoral/metabolismo , Línea Celular Tumoral/patología , Transformación Celular Neoplásica/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Músculo Esquelético/citología , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , ARN Mensajero/metabolismo , ARN Neoplásico/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Neoplasias de los Tejidos Blandos/metabolismo , Neoplasias de los Tejidos Blandos/patología , Acetato de Tetradecanoilforbol/farmacología , Timosina/análogos & derivados , Timosina/genética , Timosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA