Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 30(26): e202304083, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38647352

RESUMEN

Singlet dioxygen has been widely applied in different disciplines such as medicine (photodynamic therapy or blood sterilization), remediation (wastewater treatment) or industrial processes (fine chemicals synthesis). Particularly, it can be conveniently generated by energy transfer between a photosensitizer's triplet state and triplet dioxygen upon irradiation with visible light. Among the best photosensitizers, substituted zinc(II) phthalocyanines are prominent due to their excellent photophysical properties, which can be tuned by structural modifications, such as halogen- and chalcogen-atom substitution. These patterns allow for the enhancement of spin-orbit coupling, commonly attributed to the heavy atom effect, which correlates with the atomic number ( Z ${Z}$ ) and the spin-orbit coupling constant ( ζ ${\zeta }$ ) of the introduced heteroatom. Herein, a fully systematic analysis of the effect exerted by chalcogen atoms on the photophysical characteristics (absorption and fluorescence properties, lifetimes and singlet dioxygen photogeneration), involving 30 custom-made ß-tetrasubstituted chalcogen-bearing zinc(II) phthalocyanines is described and evaluated regarding the heavy atom effect. Besides, the intersystem crossing rate constants are estimated by several independent methods and a quantitative profile of the heavy atom is provided by using linear correlations between relative intersystem crossing rates and relative atomic numbers. Good linear trends for both intersystem crossing rates (S1-T1 and T1-S0) were obtained, with a dependency on the atomic number and the spin-orbit coupling constant scaling as Z 0 . 4 ${{Z}^{0.4}}$ and ζ 0 . 2 ${{\zeta }^{0.2}}$ , respectively The trend shows to be independent of the solvent and temperature.

2.
J Chem Phys ; 161(9)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39234963

RESUMEN

For the computation of vibrationally resolved electronic spectra, various approaches can be employed. Adiabatic approaches simulate vibronic transitions using harmonic potentials of the initial and final states, while vertical approaches extrapolate the final state potential from the gradients and Hessian at the Franck-Condon point, avoiding a full exploration of the potential energy surface of the final state. Our implementation of the vertical Hessian (VH) method has been validated with a benchmark set of four small molecules, each presenting unique challenges, such as complex topologies, problematic low-frequency vibrations, or significant geometrical changes upon electronic excitation. We assess the quality of both adiabatic and vertical approaches for simulating vibronic transitions. For two types of donor-acceptor compounds with promising thermally activated delayed fluorescence properties, our computations confirm that the vertical approaches outperform the adiabatic ones. The VH method significantly reduces computational costs and yields meaningful emission spectra, where adiabatic models fail. More importantly, we pioneer the use of the VH method for the computation of rate constants for non-radiative processes, such as intersystem crossing and reverse intersystem crossing along a relaxed interpolated pathway of a donor-acceptor compound. This study highlights the potential of the VH method to advance computational vibronic spectroscopy by providing meaningful simulations of intricate decay pathway mechanisms in complex molecular systems.

3.
J Phys Chem A ; 127(8): 2011-2025, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36799533

RESUMEN

A reformulation of the combined density functional theory and multireference configuration interaction method (DFT/MRCI) is presented. Expressions for ab initio matrix elements are used to derive correction terms for a new effective Hamiltonian. On the example of diatomic carbon, the correction terms are derived, focusing on the doubly excited 1Δg state, which was problematic in previous formulations of the method, as were double excitations in general. The derivation shows that a splitting of the parameters for intra- and interorbital interactions is necessary for a concise description of the underlying physics. Results for 1La and 1Lb states in polyacenes and 1Au and 1Ag states in mini-ß-carotenoids suggest that the presented formulation is superior to former effective Hamiltonians. Furthermore, statistical analysis reveals that all the benefits of the previous DFT/MRCI Hamiltonians are retained. Consequently, the here presented formulation should be considered as the new standard for DFT/MRCI calculations.

4.
Nervenarzt ; 93(5): 488-498, 2022 May.
Artículo en Alemán | MEDLINE | ID: mdl-34114073

RESUMEN

BACKGROUND: Based on international randomized controlled trials (RCT) the German Association for Psychiatry, Psychotherapy and Psychosomatics (DGPPN) recommends acute treatment in the domestic environment (AHU) and intensive outreach treatment (IAB) with the highest level of evidence; however, due to large differences in national healthcare systems the transference of results from international studies to the healthcare systems in Germany, Austria and Switzerland could be limited. OBJECTIVE: Evaluation of studies on outreach psychiatric treatment forms in Germany, Austria and Switzerland and discussion of the results in the light of international evidence. MATERIAL AND METHODS: A systematic literature search for clinical trials on outreach community treatment from Germany, Austria and Switzerland was conducted in the PubMed database. RESULTS: A total of 19 publications were identified which could be assigned to 5 publications on 4 studies with 2857 patients on AHU and 14 publications on 10 studies with 3207 patients on IAB. The studies on AHU showed this treatment form to be superior regarding the duration of inpatient stay and healthcare costs. The studies on IAB showed more positive outcomes in comparison to controls regarding symptoms, severity of illness, substance abuse, functioning level, remission, satisfaction with treatment, quality of life, healthcare costs, work and housing situations. CONCLUSION: The studies from Germany, Austria, and Switzerland suggest that outreach community treatment is superior regarding several outcome parameters. Thus, there are no indications suggesting that international evidence could not be valid for these countries. Additionally, with one RCT for AHU and one for IAB the requirements for an evidence level of 1b for outreach community treatment in the healthcare systems in question are fulfilled.


Asunto(s)
Trastornos Mentales , Austria , Alemania , Humanos , Trastornos Mentales/diagnóstico , Trastornos Mentales/epidemiología , Trastornos Mentales/terapia , Calidad de Vida , Suiza
5.
J Phys Chem A ; 125(46): 10044-10051, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34756038

RESUMEN

Heptazine derivatives are promising dopants for electroluminescent devices. Recent studies raised the question whether heptazines exhibit a small regular or an inverted singlet-triplet (IST) gap. It was argued that the S1 ← T1 reverse intersystem crossing (RISC) is a downhill process in IST emitters and therefore does not require thermal activation, thus enabling efficient harvesting of triplet excitons. Rate constants were not determined in these studies. Modeling the excited-state properties of heptazine proves challenging because fluorescence and intersystem crossing (ISC) are symmetry-forbidden in first order. In this work, we present a comprehensive theoretical study of the photophysics of heptazine and its derivative HAP-3MF. The calculations of electronic excitation energies and vibronic coupling matrix elements have been conducted at the density functional theory/multireference configuration interaction (DFT/MRCI) level of theory. We have employed a finite difference approach to determine nonadiabatic couplings and derivatives of spin-orbit coupling and electric dipole transition matrix elements with respect to normal coordinate displacements. Kinetic constants for fluorescence, phosphorescence, internal conversion (IC), ISC, and RISC have been computed in the framework of a static approach. Radiative S1 ↔ S0 transitions borrow intensity mainly from optically bright E' π → π* states, while S1 ↔ T1 (R)ISC is mediated by E″ states of n → π* character. Test calculations show that IST gaps as large as those reported in the literature are counterproductive and slow down the S1 ← T1 RISC process. Using the adiabatic DFT/MRCI singlet-triplet splitting of -0.02 eV, we find vibronically enhanced ISC and RISC to be fast in the heptazine core compound. Nevertheless, its photo- and electroluminescence quantum yields are predicted to be very low because S1 → S0 IC efficiently quenches the luminescence. In contrast, fluorescence, IC, ISC, and RISC proceed at similar time scales in HAP-3MF.

6.
J Chem Phys ; 155(1): 014102, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34241387

RESUMEN

We present an efficient implementation of nonadiabatic coupling matrix elements (NACMEs) for density functional theory/multireference configuration interaction (DFT/MRCI) wave functions of singlet and triplet multiplicity and an extension of the Vibes program that allows us to determine rate constants for internal conversion (IC) in addition to intersystem crossing (ISC) nonradiative transitions. Following the suggestion of Plasser et al. [J. Chem. Theory Comput. 12, 1207 (2016)], the derivative couplings are computed as finite differences of wave function overlaps. Several measures have been taken to speed up the calculation of the NACMEs. Schur's determinant complement is employed to build up the determinant of the full matrix of spin-blocked orbital overlaps from precomputed spin factors with fixed orbital occupation. Test calculations on formaldehyde, pyrazine, and xanthone show that the mutual excitation level of the configurations at the reference and displaced geometries can be restricted to 1. In combination with a cutoff parameter of tnorm = 10-8 for the DFT/MRCI wave function expansion, this approximation leads to substantial savings of cpu time without essential loss of precision. With regard to applications, the photoexcitation decay kinetics of xanthone in apolar media and in aqueous solution is in the focus of the present work. The results of our computational study substantiate the conjecture that S1 T2 reverse ISC outcompetes the T2 ↝ T1 IC in aqueous solution, thus explaining the occurrence of delayed fluorescence in addition to prompt fluorescence.

7.
Int J Mol Sci ; 22(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073350

RESUMEN

The astacin protease Meprin ß represents an emerging target for drug development due to its potential involvement in disorders such as acute and chronic kidney injury and fibrosis. Here, we elaborate on the structural basis of inhibition by a specific Meprin ß inhibitor. Our analysis of the crystal structure suggests different binding modes of the inhibitor to the active site. This flexibility is caused, at least in part, by movement of the C-terminal region of the protease domain (CTD). The CTD movement narrows the active site cleft upon inhibitor binding. Compared with other astacin proteases, among these the highly homologous isoenzyme Meprin α, differences in the subsites account for the unique selectivity of the inhibitor. Although the inhibitor shows substantial flexibility in orientation within the active site, the structural data as well as binding analyses, including molecular dynamics simulations, support a contribution of electrostatic interactions, presumably by arginine residues, to binding and specificity. Collectively, the results presented here and previously support an induced fit and substantial movement of the CTD upon ligand binding and, possibly, during catalysis. To the best of our knowledge, we here present the first structure of a Meprin ß holoenzyme containing a zinc ion and a specific inhibitor bound to the active site. The structural data will guide rational drug design and the discovery of highly potent Meprin inhibitors.


Asunto(s)
Ácidos Hidroxámicos/química , Metaloendopeptidasas/antagonistas & inhibidores , Metaloendopeptidasas/química , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , Humanos , Relación Estructura-Actividad
8.
Molecules ; 25(7)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244568

RESUMEN

In an effort to explain the experimentally observed variation of the photocatalytic activity of t Bu 3 P, n Bu 3 P and (MeO) 3 P in the blue-light regime [Helmecke et al., Org. Lett. 21 (2019) 7823], we have explored the absorption characteristics of several phosphine- and phosphite-IC 4 F 9 adducts by means of relativistic density functional theory and multireference configuration interaction methods. Based on the results of these computational and complementary experimental studies, we offer an explanation for the broad tailing of the absorption of t Bu 3 P-IC 4 F 9 and (MeO) 3 P-IC 4 F 9 into the visible-light region. Larger coordinate displacements of the ground and excited singlet potential energy wells in n Bu 3 P-IC 4 F 9 , in particular with regard to the P-I-C bending angle, reduce the Franck-Condon factors and thus the absorption probability compared to t Bu 3 P-IC 4 F 9 . Spectroscopic and computational evaluation of conformationally flexible and locked phosphites suggests that the reactivity of (MeO) 3 P may be the result of oxygen lone-pair participation and concomitant broadening of absorption. The proposed mechanism for the phosphine-catalyzed homolytic C-I cleavage of perfluorobutane iodide involves S1 ← S0 absorption of the adduct followed by intersystem crossing to the photochemically active T 1 state.


Asunto(s)
Yoduros/química , Luz , Fosfinas/química , Procesos Fotoquímicos , Algoritmos , Modelos Teóricos , Conformación Molecular , Teoría Cuántica , Análisis Espectral
9.
Phys Chem Chem Phys ; 21(19): 9912-9923, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31038527

RESUMEN

10-Methylisoalloxazine (MIA) and its mono-fluorinated derivatives (6-9F-MIA) were investigated by means of quantum chemistry, looking into the influence of fluorination on fluorescence, absorption and inter-system crossing (ISC). A maximized fluorescence quantum yield (ΦFl) of this chromophore is desirable for application as a potential fluorescence marker in biodiagnostics/photobiological studies. An enhanced triplet quantum yield ΦT on the other hand may open a perspective for photodynamic therapies (PDT) in cancer treatment. Determination of equilibrium geometries was carried out employing (time-dependent) Kohn-Sham density functional theory and electronic properties were obtained using a combined density functional theory and multi-reference configuration interaction (DFT/MRCI) method. In the gas phase, El-Sayed-favored 1(ππ*) [radiolysis arrow - arrow with voltage kink] 3(nπ*)-ISC enables population transfer to the triplet domain on a timescale of 109 s-1, i.e. significantly faster than fluorescence (kFl ≈ 107 s-1). Two different models were applied to investigate the influence of aqueous medium on absorption and relaxation: the implicit solvation model A is the well-established conductor-like screening model (COSMO) and hybrid model B combines quantum mechanical micro-hydration and conductor-like screening. A polar, protic environment leads to a significant blue-shift of the nπ* potentials, slowing down the ISC process to 107-108 s-1, now enabled by vibronic spin-orbit coupling. Simple principles are derived that demonstrate the effect of fluorination at different positions on the spectroscopic properties. These principles can be utilized with respect to multiply fluorinated derivatives and even further substitution to enlarge effects on the population decay and quantum yields.


Asunto(s)
Teoría Funcional de la Densidad , Flavinas/química , Fluorescencia , Halogenación , Estructura Molecular , Procesos Fotoquímicos
10.
J Chem Phys ; 151(14): 144104, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31615239

RESUMEN

We present an extension of the combined density functional theory (DFT) and multireference configuration interaction (MRCI) method (DFT/MRCI) [S. Grimme and M. Waletzke, J. Chem. Phys. 111, 5645 (1999)] for the calculation of core-excited states based on the core-valence separation (CVS) approximation. The resulting method, CVS-DFT/MRCI, is validated via the simulation of the K-edge X-ray absorption spectra of 40 organic chromophores, amino acids, and nucleobases, ranging in size from CO2 to tryptophan. Overall, the CVS-DFT/MRCI method is found to yield accurate X-ray absorption spectra (XAS), with consistent errors in peak positions of ∼2.5-3.5 eV. Additionally, we show that the CVS-DFT/MRCI method may be employed to simulate XAS from valence excited states and compare the simulated spectra to those computed using the established wave function-based approaches [ADC(2) and ADC(2)x]. In general, each of the methods yields excited state XAS spectra in qualitative and often quantitative agreement. In the instances where the methods differ, the CVS-DFT/MRCI simulations predict intensity for transitions for which the underlying electronic states are characterized by doubly excited configurations relative to the ground state configuration. Here, we aim to demonstrate that the CVS-DFT/MRCI approach occupies a specific niche among numerous other electronic structure methods in this area, offering the ability to treat initial states of arbitrary electronic character while maintaining a low computational cost and comparatively black box usage.

11.
J Biol Chem ; 292(30): 12713-12724, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28623233

RESUMEN

Alzheimer disease is associated with deposition of the amyloidogenic peptide Aß in the brain. Passive immunization using Aß-specific antibodies has been demonstrated to reduce amyloid deposition both in vitro and in vivo Because N-terminally truncated pyroglutamate (pE)-modified Aß species (AßpE3) exhibit enhanced aggregation potential and propensity to form toxic oligomers, they represent particularly attractive targets for antibody therapy. Here we present three separate monoclonal antibodies that specifically recognize AßpE3 with affinities of 1-10 nm and inhibit AßpE3 fibril formation in vitro. In vivo application of one of these resulted in improved memory in AßpE3 oligomer-treated mice. Crystal structures of Fab-AßpE3 complexes revealed two distinct binding modes for the peptide. Juxtaposition of pyroglutamate pE3 and the F4 side chain (the "pEF head") confers a pronounced bulky hydrophobic nature to the AßpE3 N terminus that might explain the enhanced aggregation properties of the modified peptide. The deep burial of the pEF head by two of the antibodies explains their high target specificity and low cross-reactivity, making them promising candidates for the development of clinical antibodies.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/inmunología , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Inmunoterapia , Ácido Pirrolidona Carboxílico/inmunología , Péptidos beta-Amiloides/química , Animales , Células Cultivadas , Ratones
12.
J Chem Phys ; 149(16): 164106, 2018 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-30384728

RESUMEN

The combination of density functional theory and multireference configuration interaction (DFT/MRCI) is a well-established semi-empirical method suitable for computing spectral properties of large molecular systems. To this day, three different Hamiltonians and various parameter set combinations exist. These DFT/MRCI variants are well tried and tested when it comes to electronic excitations of organic molecules. For transition metal complexes, systematic benchmarks against experimental data are missing, however. Here we present an assessment of the DFT/MRCI variants and of time-dependent, linear-response density functional theory (TDDFT) for a diverse set of ligand-centered, metal-to-ligand charge transfer, metal-centered, and ligand-to-metal charge transfer (LMCT) excitations on 21 3d and 4d complexes comprising 10 small inorganic and 11 larger metalorganic compounds with closed-shell ground states. In the course of this assessment, we realized that the excitation energies of transition metal complexes can be very sensitive with respect to the details of the damping function that scales off-diagonal matrix elements. This scaling is required in DFT/MRCI to avoid double counting of dynamic electron correlation. These insights lead to a new Hamiltonian, denoted R2018, with improved performance on transition metal compounds, while the results for organic molecules are nearly unaffected by the modified damping function. Two parameter sets were optimized for this Hamiltonian: One set is to be used in conjunction with the standard configuration selection threshold of 1.0 E h and a second set is for use with a selection threshold of 0.8 E h which leads to shorter wave function expansions. The R2018 Hamiltonian in standard parameterization achieves root-mean-square errors (RMSEs) of merely 0.15 eV for the metalorganic complexes, followed by 0.20 eV for the original DFT/MRCI ansatz, and 0.25 eV for the redesigned DFT/MRCI approach. In comparison, TDDFT gives a much larger RMSE of 0.46 eV for metalorganic complexes. None of the DFT/MRCI variants yields convincing results for small oxides and fluorides which exhibit LMCT transitions. Here, TDDFT performs better. If the oxides and fluorides are excluded from the inorganic test set, satisfactory agreement can be achieved, with RMSE values between 0.26 eV and 0.30 eV for DFT/MRCI and 0.34 eV for TDDFT. The performance of the original and the new DFT/MRCI Hamiltonians deteriorates only slightly, when a tighter selection threshold is chosen, thus enabling the computation of reliable spectral properties even for large metalorganic complexes.

13.
J Pharmacol Exp Ther ; 362(1): 119-130, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28446518

RESUMEN

Numerous studies suggest that the majority of amyloid-ß (Aß) peptides deposited in Alzheimer's disease (AD) are truncated and post-translationally modified at the N terminus. Among these modified species, pyroglutamyl-Aß (pE-Aß, including N3pE-Aß40/42 and N11pE-Aß40/42) has been identified as particularly neurotoxic. The N-terminal modification renders the peptide hydrophobic, accelerates formation of oligomers, and reduces degradation by peptidases, leading ultimately to the accumulation of the peptide and progression of AD. It has been shown that the formation of pyroglutamyl residues is catalyzed by glutaminyl cyclase (QC). Here, we present data about the pharmacological in vitro and in vivo efficacy of the QC inhibitor (S)-1-(1H-benzo[d]imidazol-5-yl)-5-(4-propoxyphenyl)imidazolidin-2-one (PQ912), the first-in-class compound that is in clinical development. PQ912 inhibits human, rat, and mouse QC activity, with Ki values ranging between 20 and 65 nM. Chronic oral treatment of hAPPSLxhQC double-transgenic mice with approximately 200 mg/kg/day via chow shows a significant reduction of pE-Aß levels and concomitant improvement of spatial learning in a Morris water maze test paradigm. This dose results in a brain and cerebrospinal fluid concentration of PQ912 which relates to a QC target occupancy of about 60%. Thus, we conclude that >50% inhibition of QC activity in the brain leads to robust treatment effects. Secondary pharmacology experiments in mice indicate a fairly large potency difference for Aß cyclization compared with cyclization of physiologic substrates, suggesting a robust therapeutic window in humans. This information constitutes an important translational guidance for predicting the therapeutic dose range in clinical studies with PQ912.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Aminoaciltransferasas/antagonistas & inhibidores , Bencimidazoles/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Imidazolinas/uso terapéutico , Nootrópicos/uso terapéutico , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/efectos de los fármacos , Animales , Bencimidazoles/líquido cefalorraquídeo , Bencimidazoles/farmacocinética , Sitios de Unión , Ciclización , Sistemas de Liberación de Medicamentos , Inhibidores Enzimáticos/líquido cefalorraquídeo , Inhibidores Enzimáticos/farmacocinética , Femenino , Células HEK293 , Humanos , Imidazolinas/líquido cefalorraquídeo , Imidazolinas/farmacocinética , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Transgénicos , Nootrópicos/líquido cefalorraquídeo , Nootrópicos/farmacocinética , Unión Proteica , Ratas , Aprendizaje Espacial/efectos de los fármacos
14.
Inorg Chem ; 55(15): 7508-16, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27428010

RESUMEN

The photophysical properties of a cationic three-coordinate copper(I) complex with a monodentate N-heterocyclic carbene ligand and a bidentate phenanthroline ligand have been investigated by employing computational chemistry methods. The absorption spectrum, calculated with the combined density functional theory and multireference configuration interaction method, matches experimentally available data perfectly, thus corroborating the validity of our applied theoretical approach. On the basis of our calculated singlet-triplet gap of 650 cm(-1) and the (reverse) intersystem crossing rates that are both larger than the fluorescence and phosphorescence rates at room temperature, we conclude that thermally activated delayed fluorescence should be observable for this complex in addition to phosphorescence. Torsion of the ligands has only a small impact on the singlet-triplet gap. However, the electronic coupling between the S1 and T1 states-and hence the probability for (reverse) intersystem crossing-is seen to increase substantially when moving from a coplanar to a perpendicular arrangement of the ligands.

15.
J Chem Phys ; 144(3): 034104, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26801017

RESUMEN

The combined density functional theory and multireference configuration interaction (DFT/MRCI) method of Grimme and Waletzke [J. Chem. Phys. 111, 5645 (1999)] is a well-established semi-empirical quantum chemical method for efficiently computing excited-state properties of organic molecules. As it turns out, the method fails to treat bi-chromophores owing to the strong dependence of the parameters on the excitation class. In this work, we present an alternative form of correcting the matrix elements of a MRCI Hamiltonian which is built from a Kohn-Sham set of orbitals. It is based on the idea of constructing individual energy shifts for each of the state functions of a configuration. The new parameterization is spin-invariant and incorporates less empirism compared to the original formulation. By utilizing damping techniques together with an algorithm of selecting important configurations for treating static electron correlation, the high computational efficiency has been preserved. The robustness of the original and redesigned Hamiltonians has been tested on experimentally known vertical excitation energies of organic molecules yielding similar statistics for the two parameterizations. Besides that, our new formulation is free from artificially low-lying doubly excited states, producing qualitatively correct and consistent results for excimers. The way of modifying matrix elements of the MRCI Hamiltonian presented here shall be considered as default choice when investigating photophysical processes of bi-chromophoric systems such as singlet fission or triplet-triplet upconversion.

16.
Biochim Biophys Acta ; 1843(5): 965-75, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24487064

RESUMEN

Interleukin-6 is one of the most prominent triggers of inflammatory processes. We have shown recently that heteroarylketones (HAKs) interfere with stimulated interleukin-6 expression in astrocytes by suppression of STAT3 phosphorylation at serine 727. Surprisingly, this effect is not based on the inhibition of STAT3-relevant kinases. Therefore, we here used the structurally modified HAK compound biotin-HAK-3 in a reverse chemical approach to identify the relevant molecular target in UV-mediated cross-linking experiments. Employing streptavidin-specific 2D-immunoblotting followed by mass spectrometry we identified nine proteins putatively interacting with biotin-HAK-3. After co-immunoprecipitation, co-immunofluorescence, surface plasmon resonance analyses and RNAi-mediated knock-down, the eukaryotic elongation factor 1A1 (eEF1A1) was verified as the relevant target of HAK bioactivity. eEF1A1 forms complexes with STAT3 and PKCδ, which are crucial for STAT3(S727) phosphorylation and for NF-κB/STAT3-enhanced interleukin-6 expression. Furthermore, the intracellular HAK accumulation is strongly dependent on eEF1A1 expression. Taken together, the results reveal a novel molecular mechanism for a non-canonical role of eEF1A1 in signal transduction via direct modulation of kinase-dependent phosphorylation events.


Asunto(s)
Interleucina-6/metabolismo , Factor 1 de Elongación Peptídica/fisiología , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Humanos , Cetonas/farmacología , Fosforilación , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Transcripción STAT3/metabolismo , Resonancia por Plasmón de Superficie
17.
Acta Neuropathol ; 129(4): 565-83, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25666182

RESUMEN

The brains of Alzheimer's disease (AD) patients are characterized by deposits of Abeta peptides and by accompanying chronic inflammation. Here, we provide evidence that the enzyme isoglutaminyl cyclase (isoQC) is a novel factor contributing to both aspects of AD pathology. Two putative substrates of isoQC, N-truncated Abeta peptides and the monocyte chemoattractant chemokine CCL2, undergo isoQC-catalyzed pyroglutamate (pGlu) modification. This triggers Abeta aggregation and facilitates the biological activity of CCL2, which collectively results in the formation of high molecular weight Abeta aggregates, glial cell activation, neuroinflammation and neuronal cell death. In mouse brain, we found isoQC to be neuron-specifically expressed in neocortical, hippocampal and subcortical structures, localized to the endoplasmic reticulum and Golgi apparatus as well as co-expressed with its substrate CCL2. In aged APP transgenic Tg2576 mice, both isoQC and CCL2 mRNA levels are up-regulated and isoQC and CCL2 proteins were found to be co-induced in Abeta plaque-associated reactive astrocytes. Also, in mouse primary astrocyte culture, a simultaneous up-regulation of isoQC and CCL2 expression was revealed upon Abeta and pGlu-Abeta stimulation. In brains of AD patients, the expression of isoQC and CCL2 mRNA and protein is up-regulated compared to controls and correlates with pGlu-Abeta load and with the decline in mini-mental state examination. Our observations provide evidence for a dual involvement of isoQC in AD pathogenesis by catalysis of pGlu-Abeta and pGlu-CCL2 formation which mutually stimulate inflammatory events and affect cognition. We conclude that isoQC inhibition may target both major pathological events in the development of AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Aminoaciltransferasas/metabolismo , Encéfalo/metabolismo , Quimiocina CCL2/metabolismo , Factores de Edad , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Aminoaciltransferasas/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Encéfalo/patología , Células Cultivadas , Quimiocina CCL2/genética , Modelos Animales de Enfermedad , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Factores de Tiempo , Regulación hacia Arriba/genética
18.
J Chem Phys ; 142(9): 094301, 2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-25747075

RESUMEN

We have employed combined density functional theory and multi-reference configuration interaction methods including spin-orbit coupling (SOC) effects to investigate the photophysics of the green phosphorescent emitter fac-tris-(2-phenylpyridine)iridium (fac-Ir(ppy)3). A critical evaluation of our quantum chemical approaches shows that a perturbational treatment of SOC is the method of choice for computing the UV/Vis spectrum of this heavy transition metal complex while multi-reference spin-orbit configuration interaction is preferable for calculating the phosphorescence rates. The particular choice of the spin-orbit interaction operator is found to be of minor importance. Intersystem crossing (ISC) rates have been determined by Fourier transformation of the time correlation function of the transition including Dushinsky rotations. In the electronic ground state, fac-Ir(ppy)3 is C3 symmetric. The calculated UV/Vis spectrum is in excellent agreement with experiment. The effect of SOC is particularly pronounced for the metal-to-ligand charge transfer (MLCT) band in the visible region of the absorption spectrum which does not only extend its spectral onset towards longer wavelengths but also experiences a blue shift of its maximum. Pseudo-Jahn-Teller interaction leads to asymmetric coordinate displacements in the lowest MLCT states. Substantial electronic SOC and a small energy gap make ISC an ultrafast process in fac-Ir(ppy)3. For the S1↝T1 non-radiative transition, we compute a rate constant of kISC = 6.9 × 10(12) s(-1) which exceeds the rate constant of radiative decay to the electronic ground state by more than six orders of magnitude, in agreement with the experimental observation of a subpicosecond ISC process and a triplet quantum yield close to unity. As a consequence of the geometric distortion in the T1 state, the T1 → S0 transition densities are localized on one of the phenylpyridyl moieties. In our best quantum chemical model, we obtain phosphorescence decay times of 264 µs, 13 µs, and 0.9 µs, respectively, for the T1,I, T1,II, and T1,III fine-structure levels in dichloromethane (DCM) solution. In addition to reproducing the correct orders of magnitude for the individual phosphorescence emission probabilities, our theoretical study gives insight into the underlying mechanisms. In terms of intensity borrowing from spin-allowed transitions, the low emission probability of the T1,I substate is caused by the mutual cancellation of contributions from several singlet states to the total transition dipole moment. Their contributions do not cancel but add up in case of the much faster T1,III → S0 emission while the T1,II → S0 emission is dominated by intensity borrowing from a single spin-allowed process, i.e., the S2 → S0 transition.

19.
Am J Pathol ; 183(2): 369-81, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23747948

RESUMEN

Amyloid-ß (Aß) peptides, starting with pyroglutamate at the third residue (pyroGlu-3 Aß), are a major species deposited in the brain of Alzheimer disease (AD) patients. Recent studies suggest that this isoform shows higher toxicity and amyloidogenecity when compared to full-length Aß peptides. Here, we report the first comprehensive and comparative IHC evaluation of pyroGlu-3 Aß deposition in humans and animal models. PyroGlu-3 Aß immunoreactivity (IR) is abundant in plaques and cerebral amyloid angiopathy of AD and Down syndrome patients, colocalizing with general Aß IR. PyroGlu-3 Aß is further present in two nontransgenic mammalian models of cerebral amyloidosis, Caribbean vervets, and beagle canines. In addition, pyroGlu-3 Aß deposition was analyzed in 12 different AD-like transgenic mouse models. In contrast to humans, all transgenic models showed general Aß deposition preceding pyroGlu-3 Aß deposition. The findings varied greatly among the mouse models concerning age of onset and cortical brain region. In summary, pyroGlu-3 Aß is a major species of ß-amyloid deposited early in diffuse and focal plaques and cerebral amyloid angiopathy in humans and nonhuman primates, whereas it is deposited later in a subset of focal and vascular amyloid in AD-like transgenic mouse models. Given the proposed decisive role of pyroGlu-3 Aß peptides for the development of human AD pathology, this study provides insights into the usage of animal models in AD studies.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Ácido Pirrolidona Carboxílico/metabolismo , Edad de Inicio , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide , Animales , Encéfalo/patología , Angiopatía Amiloide Cerebral/metabolismo , Chlorocebus aethiops , Modelos Animales de Enfermedad , Perros , Síndrome de Down/metabolismo , Femenino , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Placa Amiloide/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA