Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Pharmacol ; 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38073073

RESUMEN

BACKGROUND AND PURPOSE: P2X4 receptors (P2X4R) are ligand gated cation channels that are activated by extracellular ATP released by neurons and glia. The receptors are widely expressed in the brain and have fractional calcium currents comparable with NMDA receptors. Although P2X4Rs have been reported to modulate synaptic transmission and plasticity, their involvement in shaping neuronal network activity remains to be elucidated. EXPERIMENTAL APPROACH: We investigated the effects of P2X receptors at network and synaptic level using local field potential electrophysiology, whole cell patch clamp recordings and calcium imaging in fast spiking parvalbumin positive interneurons (PVINs) in rat and mouse hippocampal slices. The stable ATP analogue ATPγS, selective antagonists and P2X4R knockout mice were used. KEY RESULTS: The P2XR agonist ATPγS reversibly decreased the power of gamma oscillations. This inhibition could be antagonized by the selective P2X4R antagonist PSB-12062 and was not observed in P2X4-/- mice. The phasic excitatory inputs of CA3 PVINs were one of the main regulators of the gamma power. Associational fibre compound excitatory postsynaptic currents (cEPSCs) in CA3 PVINs were inhibited by P2X4R activation. This effect was reversible, dependent on intracellular calcium and dynamin-dependent internalization of AMPA receptors. CONCLUSIONS AND IMPLICATIONS: The results indicate that P2X4Rs are an important source of dendritic calcium in CA3 PVINs, thereby regulating excitatory synaptic inputs onto the cells and presumably the state of gamma oscillations in the hippocampus. P2X4Rs represent an effective target to modulate hippocampal network activity in pathophysiological conditions such as Alzheimer's disease and schizophrenia.

2.
Front Neural Circuits ; 15: 778022, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35177966

RESUMEN

Ion channels activated around the subthreshold membrane potential determine the likelihood of neuronal firing in response to synaptic inputs, a process described as intrinsic neuronal excitability. Long-term plasticity of chemical synaptic transmission is traditionally considered the main cellular mechanism of information storage in the brain; however, voltage- and calcium-activated channels modulating the inputs or outputs of neurons are also subjects of plastic changes and play a major role in learning and memory formation. Gamma oscillations are associated with numerous higher cognitive functions such as learning and memory, but our knowledge of their dependence on intrinsic plasticity is by far limited. Here we investigated the roles of potassium and calcium channels activated at near subthreshold membrane potentials in cholinergically induced persistent gamma oscillations measured in the CA3 area of rat hippocampal slices. Among potassium channels, which are responsible for the afterhyperpolarization in CA3 pyramidal cells, we found that blockers of SK (KCa2) and KV7.2/7.3 (KCNQ2/3), but not the BK (KCa1.1) and IK (KCa3.1) channels, increased the power of gamma oscillations. On the contrary, activators of these channels had an attenuating effect without affecting the frequency. Pharmacological blockade of the low voltage-activated T-type calcium channels (CaV3.1-3.3) reduced gamma power and increased the oscillation peak frequency. Enhancement of these channels also inhibited the peak power without altering the frequency of the oscillations. The presented data suggest that voltage- and calcium-activated ion channels involved in intrinsic excitability strongly regulate the power of hippocampal gamma oscillations. Targeting these channels could represent a valuable pharmacological strategy against cognitive impairment.


Asunto(s)
Hipocampo , Neuronas , Potenciales de Acción/fisiología , Animales , Hipocampo/fisiología , Humanos , Neuronas/fisiología , Células Piramidales/fisiología , Ratas , Transmisión Sináptica
3.
Sci Rep ; 11(1): 8662, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883605

RESUMEN

The actin binding protein drebrin plays a key role in dendritic spine formation and synaptic plasticity. Decreased drebrin protein levels have been observed in temporal lobe epilepsy, suggesting the involvement of drebrin in the disease. Here we investigated the effect of drebrin knockout on physiological and pathophysiological neuronal network activities in mice by inducing gamma oscillations, involved in higher cognitive functions, and by analyzing pathophysiological epileptiform activity. We found that loss of drebrin increased the emergence of spontaneous gamma oscillations suggesting an increase in neuronal excitability when drebrin is absent. Further analysis showed that although the kainate-induced hippocampal gamma oscillations were unchanged in drebrin deficient mice, seizure like events measured in the entorhinal cortex appeared earlier and more frequently. The results suggest that while drebrin is not essential for normal physiological network activity, it helps to protect against the formation of seizure like activities during pathological conditions. The data indicate that targeting drebrin function could potentially be a preventive or therapeutic strategy for epilepsy treatment.


Asunto(s)
Corteza Entorrinal/fisiología , Neuropéptidos/fisiología , Convulsiones/metabolismo , Animales , Western Blotting , Femenino , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Ratones Noqueados , Red Nerviosa/fisiología , Ratas , Convulsiones/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA