RESUMEN
Increasing evidence points toward epigenetic variants as a risk factor for developing obesity. We analyzed DNA methylation of the POMC (pro-opiomelanocortin) gene, which is pivotal for satiety regulation. We identified sex-specific and nongenetically determined POMC hypermethylation associated with a 1.4-fold (confidence interval, 1.03 to 2.04) increased individual risk of developing obesity. To investigate the early embryonic establishment of POMC methylation states, we established a human embryonic stem cell (hESC) model. Here, hESCs (WA01) were transferred into a naïve state, which was associated with a reduction of DNA methylation. Naïve hESCs were differentiated via a formative state into POMC-expressing hypothalamic neurons, which was accompanied by re-establishment of DNA methylation patterning. We observed that reduced POMC gene expression was associated with increased POMC methylation in POMC-expressing neurons. On the basis of these findings, we treated POMC-hypermethylated obese individuals (n = 5) with an MC4R agonist and observed a body weight reduction of 4.66 ± 2.16% (means ± SD) over a mean treatment duration of 38.4 ± 26.0 weeks. In summary, we identified an epigenetic obesity risk variant at the POMC gene fulfilling the criteria for a metastable epiallele established in early embryonic development that may be addressable by MC4R agonist treatment to reduce body weight.
Asunto(s)
Obesidad , Proopiomelanocortina , Masculino , Embarazo , Femenino , Humanos , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Obesidad/genética , Obesidad/metabolismo , Peso Corporal/fisiología , Metilación de ADN/genética , Factores de Riesgo , Receptor de Melanocortina Tipo 4/genética , Receptor de Melanocortina Tipo 4/metabolismoRESUMEN
This paper applies objective methods to explore the technological origins of the widely acclaimed CRISPR breakthrough in the technological domain of genome engineering. Previously developed patent search techniques are first used to recover a set of patents that well-represent the genome editing domain before CRISPR. Main paths are then determined from the citation network associated with this patent set allowing identification of the three major knowledge trajectories. The most significant of these trajectories for CRISPR involves the core of genome editing with less significant trajectories involving cloning and endonuclease specific developments. The major patents on the core trajectory are consistent with qualitative expert knowledge of the topical area. A second set of patents that we call the CRISPR roots are obtained by finding the patents directly cited by the recent CRISPR patents along with patents cited by that set of patents. We find that the CRISPR roots contain 8 key patents from the genome engineering main path associated with restriction endonucleases and the expected strong connection of CRISPR to prior genome editing technology such as Zn finger nucleases. Nonetheless, analysis of the full CRISPR roots shows that a very wide array of technological knowledge beyond genome engineering has contributed to achieving the CRISPR breakthrough. Such breadth in origins is not surprising since "spillover" is generally perceived as important and previous qualitative studies of CRISPR have shown not only technological breadth in origins but scientific breadth as well. In addition, we find that the estimated rate of functional performance improvement of the CRISPR roots set is about 9% per year compared to the genome engineering set (~4% per year). These estimates indicate below average rates of improvement and may indicate that CRISPR (and perhaps yet undiscovered) genome engineering developments could evolve in effectiveness over an upcoming long rather than short time period.
Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica/métodos , Patentes como Asunto , Animales , Bacterias/enzimología , Bacterias/genética , Bacterias/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Genoma , HumanosRESUMEN
Obesity is a multifactorial disorder with a complex phenotype. It is a significant risk factor for diabetes and hypertension. We assessed obesity-related traits in a large cohort of twins and performed a genome-wide linkage scan and positional candidate analysis to identify genes that play a role in regulating fat mass and distribution in women. Dizygous female twin pairs from 1,094 pedigrees were studied (mean age 47.0+/-11.5 years (range 18-79 years)). Nonparametric multipoint linkage analyses showed linkage for central fat mass to 12q24 (141 cM) with LOD 2.2 and body mass index to 8q11 (67 cM) with LOD 1.3, supporting previously established linkage data. Novel areas of suggestive linkage were for total fat percentage at 6q12 (LOD 2.4) and for total lean mass at 2q37 (LOD 2.4). Data from follow-up fine mapping in an expanded cohort of 1243 twin pairs reinforced the linkage for central fat mass to 12q24 (LOD 2.6; 143 cM) and narrowed the -1 LOD support interval to 22 cM. In all, 45 single-nucleotide polymorphisms (SNPs) from 26 positional candidate genes within the 12q24 interval were then tested for association in a cohort of 1102 twins. Single-point Monks-Kaplan analysis provided evidence of association between central fat mass and SNPs in two genes - PLA2G1B (P = 0.0067) and P2RX4 (P = 0.017). These data provide replication and refinement of the 12q24 obesity locus and suggest that genes involved in phospholipase and purinoreceptor pathways may regulate fat accumulation and distribution.