RESUMEN
C-phycocyanin (C-PC) is the main component of water-soluble light-harvesting complexes (phycobilisomes, PBS) of cyanobacteria. PBS are involved in the absorption of quantum energy and the transfer of electronic excitation energy to the photosystems. A specific environment of C-PC chromophoric groups is provided by the protein matrix structure including protein-protein contacts between different subunits. Registration of C-PC spectral characteristics and the fluorescence anisotropy decay have revealed a significant pH influence on the chromophore microenvironment: at pH 5.0, a chromophore is more significantly interacts with the solvent, whereas at pH 9.0 the chromophore microenvironment becomes more viscous. Conformations of chromophores and the C-PC protein matrix have been studied by Raman and infrared spectroscopy. A decrease in the medium pH results in changes in the secondary structure either the C-PC apoproteins and chromophores, the last one adopts a more folded conformation.
Asunto(s)
Proteínas Bacterianas , Complejos de Proteína Captadores de Luz , Ficocianina , Spirulina , Ficocianina/química , Concentración de Iones de Hidrógeno , Polarización de Fluorescencia , Espectrometría Raman , Espectrofotometría Infrarroja , Estructura Secundaria de Proteína , Complejos de Proteína Captadores de Luz/química , Pliegue de Proteína , Spirulina/enzimología , Proteínas Bacterianas/químicaRESUMEN
Melittin, a peptide from bee venom, was found to be able to interact with many proteins, including calmodulin target proteins and ion-transporting P-type ATPases. It is assumed that melittin mimics a protein module involved in protein-protein interactions within cells. Previously, a Na^(+)/K^(+)-ATPase containing the α1 isoform of the catalytic subunit was found to co-precipitate with a protein with a molecular weight of about 70 κDa that interacts with antibodies against melittin by cross immunoprecipitation. In the presence of a specific Na^(+)/K^(+)-ATPase inhibitor (ouabain), the amount of protein with a molecular weight of 70 κDa interacting with Na^(+)/K^(+)-ATPase increases. In order to identify melittin-like protein from murine kidney homogenate, a fraction of melittin-like proteins with a molecular weight of approximately 70 κDa was obtained using affinity chromatography with immobilized antibodies specific to melittin. By mass spectrometry analysis, the obtained protein fraction was found to contain three molecular chaperones of Hsp70 superfamily: mitochondrial mtHsp70 (mortalin), Hsp73, Grp78 (BiP) of endoplasmic reticulum. These data suggest that chaperones from the HSP-70 superfamily contain a melittin-like module.
Asunto(s)
Meliteno , ATPasa Intercambiadora de Sodio-Potasio , Ratones , Animales , Meliteno/química , Meliteno/metabolismo , Meliteno/farmacología , ATPasa Intercambiadora de Sodio-Potasio/química , Peso Molecular , Ouabaína/farmacología , Péptidos/metabolismo , Chaperonas Moleculares/metabolismoRESUMEN
Long-term study on the identification of Na,K-ATPase endogenous inhibitors in mammalian tissues has resulted in the discovery of ouabain, marinobufagenin (MBG), and other cardiotonic steroids (CTS) in the blood plasma. Production of ouabain and MBG is increased in essential hypertension and other diseases associated with hypervolemia. Here, we compared the effects of ouabain and MBG on the Na,K-ATPase activity (measured as the transport of Na+, K+, and Rb+ ions) and proliferation and death of human renal epithelial cells (HRECs) and human umbilical vein endothelial cells (HUVEC) expressing α1-Na,K-ATPase. Ouabain concentration that provided the half-maximal inhibition of the Rb+ influx (IC50) into HRECs and HUVECs was 0.07 µM. In both types of cells, the IC50 values for MBG were 10 times higher than for ouabain. Incubation of HREC and HUVEC with 0.001-0.01 µM ouabain for 30 h resulted in 40% increase in the [3H]thymidine incorporation into DNA; further elevation of ouabain concentration to 0.1 µM completely suppressed DNA synthesis. MBG at the concentration of 0.1 µM activated DNA synthesis by 25% in HRECs, but not in HUVECs; 1 µM MBG completely inhibited DNA synthesis in HRECs and by 50% in HUVECs. In contrast to HRECs, incubation of HUVECs in the serum-free medium induced apoptosis, which was almost completely suppressed by ouabain and MBG at the concentrations of 0.1 and 3 µM, respectively. Based on these data, we can conclude that (i) the effect of MBG at the concentrations detected in the blood plasma (<0.01 µM) on HRECs and HUVECs was not due to the changes in the [Na+]i/[K+]i ratio; (ii) the effect of physiological concentrations of ouabain on these cells might be mediated by the activation of Na,K-ATPase, leading to cell proliferation.
Asunto(s)
Bufanólidos/farmacología , Proliferación Celular , Células Endoteliales/fisiología , Células Epiteliales/fisiología , Corazón/fisiología , Ouabaína/farmacología , Cardiotónicos/farmacología , Muerte Celular , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Corazón/efectos de los fármacos , Humanos , Transporte Iónico , Vasoconstrictores/farmacologíaRESUMEN
Maintenance of non-equilibrium Na+ and K+ distribution between cytoplasm and extracellular medium suggests existence of sensors responding with conformational transitions to the changes of these monovalent cations' intracellular concentration. Molecular nature of monovalent cation sensors has been established in Na,K-ATPase, G-protein-coupled receptors, and heat shock proteins structural studies. Recently, it was found that changes in Na+ and K+ intracellular concentration are the key factors in the transcription and translation control, respectively. In this review, we summarize results of these studies and discuss physiological and pathophysiological significance of Na+i,K+i-dependent gene expression regulation mechanism.
Asunto(s)
Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Sodio/metabolismo , Animales , Cationes Monovalentes/química , Citoplasma/metabolismo , Proteínas de Choque Térmico/metabolismo , Potasio/química , Biosíntesis de Proteínas , Sodio/química , Transcripción GenéticaRESUMEN
We found earlier that Na,K-ATPase is purified from duck salt glands in partially glutathionylated state (up to 13 of the 23 cysteine residues of the Na,K-ATPase catalytic α-subunit can be S-glutathionylated). To determine the effect of glutathionylation on the enzyme conformation, we have analyzed the products of trypsinolysis of Na,K-ATPase α-subunit in different conformations with different extent of glutathionylation. Incubation of the protein in the E1 conformation with trypsin produced a large fragment with a molecular mass (MM) of 80 kDa with the following formation of smaller fragments with MM 40, 35.5, and 23 kDa. Tryptic digestion of Na,K-ATPase in the E2 conformation also resulted in the generation of the fragments with MM 40, 35.5, and 23 kDa. Deglutathionylation of Na,K-ATPase α-subunit increases the rate of proteolysis of the enzyme in both E1 and E2 conformations. The pattern of tryptic digestion of the α-subunit in E2 conformation additionally glutathionylated with oxidized glutathione is similar to that of partially deglutathionylated Na,K-ATPase. The pattern of tryptic digestion of the additionally glutathionylated α-subunit in E1 conformation is similar to that of the native enzyme. The highest rate of trypsinolysis was observed for the α-subunit in complex with ouabain (E2-OBN conformation). Additional glutathionylation increased the content of high-molecular-weight fragments among the digestion products, as compared to the native and deglutathionylated enzymes. The data obtained were confirmed using molecular modeling that revealed that number of sites accessible for trypsinolysis is higher in the E2P-OBN conformation than in the E1- and E2-conformations and that glutathionylation decreases the number of sites accessible for trypsin. Therefore, glutathionylation affects enzyme conformation and its sensitivity to trypsinolysis. The mechanisms responsible for the changes in the Na,K-ATPase sensitivity to trypsinolysis depending on the level of enzyme glutathionylation and increase in the enzyme sensitivity to proteolysis upon its binding to ouabain, as well as physiological role of these phenomena are discussed.
Asunto(s)
Glutatión/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteolisis , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Tripsina/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Patos , Modelos Moleculares , Ouabaína/farmacología , Cloruro de Potasio/farmacología , Conformación Proteica , Proteolisis/efectos de los fármacos , Cloruro de Sodio/farmacologíaRESUMEN
Na,K-ATPase is a transmembrane enzyme that creates a gradient of sodium and potassium, which is necessary for the viability of animal cells. The activity of Na,K-ATPase depends on the redox status of the cell, decreasing with oxidative stress and hypoxia. Previously, we have shown that the key role in the redox sensitivity of Na,K-ATPase is played by the regulatory glutathionylation of cysteine residues of the catalytic alpha subunit, which leads to the inhibition of the enzyme. In this study, the effect of reducing agents (DTT, ME, TCEP) on the level of glutathionylation of the alpha subunit of Na,K-ATPase from rabbit kidneys and the enzyme activity has been evaluated. We have found that the reducing agents partially deglutathionylate the protein, which leads to its activation. It was impossible to completely remove glutathionylation from the native rabbit kidney protein. The treatment of a partially denatured protein on the PVDF membrane with reducing agents (TCEP, NaBH4) also does not lead to the complete deglutathionylation of the protein. The obtained data indicate that Na,K-ATPase isolated from rabbit kidneys has both regulatory and basal glutathionylation, which appears to play an important role in the redox regulation of the function of Na, K-ATPase in mammalian tissues.
Asunto(s)
ATPasa Intercambiadora de Sodio-Potasio/química , Animales , Cisteína/química , Cisteína/metabolismo , Activación Enzimática , Oxidación-Reducción , Conejos , ATPasa Intercambiadora de Sodio-Potasio/metabolismoRESUMEN
It was shown earlier that a 67-kDa protein purified from mouse kidney using polyclonal antibodies against melittin (a peptide from bee venom) interacted with Na,K-ATPase from rabbit kidney. In this study, a 43-kDa proteolytic fragment of Na,K-ATPase α-subunit interacting with the 67-kDa melittin-like protein was found. The α-subunit was hydrolyzed by trypsin in the presence of 0.5 mM ouabain (E2-conformation of Na,K-ATPase). A proteolytic fragment interacting with the 67-kDa melittin-like protein that was identified by mass-spectrometry is a region of the cytoplasmic domain of Na,K-ATPase α-subunit located between amino acid residues 591 and 775. The fragment includes a conservative DPPRA motif that occurs in many P-type ATPases. It was shown earlier that this motif of H,K-ATPase from gastric mucosa binds to melittin. We suggest that namely this motif of P-type ATPases is able to interact with proteins containing melittin-like modules.
Asunto(s)
Meliteno/metabolismo , Péptidos/análisis , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Espectrometría de Masas en Tándem , Secuencia de Aminoácidos , Animales , Cromatografía Líquida de Alta Presión , Inmunoprecipitación , Meliteno/química , Ratones , Datos de Secuencia Molecular , Péptidos/química , Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Conejos , ATPasa Intercambiadora de Sodio-Potasio/química , Tripsina/metabolismoRESUMEN
Side-by-side with inhibition of the Na+,K+-ATPase ouabain and other cardiotonic steroids (CTS) can affect cell functions by mechanisms other than regulation of the intracellular Na+ and K+ ratio ([Na+]i/[K+]i). Thus, we compared the dose- and time-dependences of the effect of ouabain on intracellular [Na+]i/[K+]i ratio, Na+,K+-ATPase activity, and proliferation of human umbilical vein endothelial cells (HUVEC). Treatment of the cells with 1-3 nM ouabain for 24-72 h decreased the [Na+]i/[K+]i ratio and increased cell proliferation by 20-50%. We discovered that the same ouabain concentrations increased Na+,K+-ATPase activity by 25-30%, as measured by the rate of (86)Rb(+) influx. Higher ouabain concentrations inhibited Na+,K+-ATPase, increased [Na+]i/[K+]i ratio, suppressed cell growth, and caused cell death. When cells were treated with low ouabain concentrations for 48 or 72 h, a negative correlation between [Na+]i/[K+]i ratio and cell growth activation was observed. In cells treated with high ouabain concentrations for 24 h, the [Na+]i/[K+]i ratio correlated positively with proliferation inhibition. These data demonstrate that inhibition of HUVEC proliferation at high CTS concentrations correlates with dissipation of the Na+ and K+ concentration gradients, whereas cell growth stimulation by low CTS doses results from activation of Na+,K+-ATPase and decrease in the [Na+]i/[K+]i ratio.
Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ouabaína/farmacología , Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Sodio/metabolismo , Muerte Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Transporte Iónico/efectos de los fármacosRESUMEN
Decreasing the amount of oxygen in the tissues under hypoxic and ischemic conditions, observed at a number of pathologic processes, inevitably leads to their damage. One of the main causes of cell damage and death is a violation of the systems maintaining ionic balance. Na,K-ATPaseis a basic ion-transporting protein of animal cell plasma membrane and inhibition of the Na,K-ATPase activity at lower concentrations of oxygen is one of the earliest and most critical events for cell viability. Currently there is an active search for modulators of Na,K-ATPase activity. For this purpose traditionally used cardiac glycosides but the existence of serious adverse effects forced to look for alternative inhibitors of Na,K-ATPase. Previously we have found that the glutathionylation of Na,K-ATPase catalytic subunit leads to a complete-inhibition of the enzyme. In this paper it is shown that the agents which increase the level of Na,K-ATPase glutathionylation: ethyl glutathione (et-GSH), oxidized glutathione (GSSG) and N-acetyl cysteine (NAC), increase cell survival under oxygen deficiency conditions, prevent decline of ATP in the cells and normalize their redox status. Concentration range in which these substances have a maximum protective effect, and does not exhibit cytotoxic properties was defined: for et-GSH 0.2-0.5 mM, for GSSG 0.2-1 mM, for NAC 10 to 15 mM. The results show prospects for development of methods for tissues protection from damage caused by oxygen starvation by varying the degree of Na,K-ATPase glutathionylation.
Asunto(s)
Glutatión/metabolismo , Isquemia/metabolismo , Estrés Oxidativo/efectos de los fármacos , Oxígeno/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Acetilcisteína/farmacología , Adenosina Trifosfato/metabolismo , Animales , Dominio Catalítico/efectos de los fármacos , Hipoxia de la Célula , Línea Celular , Membrana Celular/química , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Glutatión/química , Disulfuro de Glutatión/farmacología , Humanos , Isquemia/tratamiento farmacológico , Isquemia/patología , Ratones , Consumo de Oxígeno/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/efectos de los fármacosRESUMEN
A partially purified Na,K-ATPase preparation from rat heart containing α1- and α2-isoforms of the enzyme was shown to include both subunits in S-glutathionylated state. Glutathionylation of the α1-subunit (but not of the α2-subunit) was partially removed when the preparation was isolated in the presence of dithiothreitol. The addition of oxidized glutathione irreversibly inhibited both isoforms. Inhibition of the enzyme containing the α1-subunit was biphasic, and the rate constants of the inhibition were 3745 ± 360 and 246 ± 18 M(-1)·min(-1). ATP, ADP, and AMP protected the Na,K-ATPase against inactivation by oxidized glutathione.
Asunto(s)
Disulfuro de Glutatión/metabolismo , Disulfuro de Glutatión/farmacología , Miocardio/enzimología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/química , Animales , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Ratas , Ratas WistarRESUMEN
High-salt consumption contributes to the development of hypertension and is considered an independent risk factor for vascular remodelling, cardiac hypertrophy and stroke incidence. Alterations in NO production, inflammation and endothelial cell stiffening are considered now as plausible mediators of cardiovascular dysfunction. We studied early responses of endothelial cells (HUVEC) caused by a moderate increase in extracellular sodium concentration. Exposure of HUVEC to elevated sodium within the physiological range up to 24 h is accompanied by changes in monovalent cations fluxes and Na,K-ATPase activation, and, in turn, results in a significant decrease in the content of PTGS2, IL6 and IL1LR1 mRNAs. The expression of NOS3 and FOS genes, as well as the abundance of cytosolic and nuclear NFAT5 protein, remained unchanged. We assessed the mechanical properties of endothelial cells by estimating Young's modulus and equivalent elastic constant using atomic force and interference microscopy, respectively. These parameters were unaffected by elevated-salt exposure for 24 h. The data obtained suggest that even small and short-term elevations of extracellular sodium concentration affect the expression of genes involved in the control of endothelial function through the Na+ i/K+ i-dependent mechanism(s).