Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur Heart J ; 40(20): 1590-1596, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30860255

RESUMEN

AIMS: Ambient air pollution is a major health risk, leading to respiratory and cardiovascular mortality. A recent Global Exposure Mortality Model, based on an unmatched number of cohort studies in many countries, provides new hazard ratio functions, calling for re-evaluation of the disease burden. Accordingly, we estimated excess cardiovascular mortality attributed to air pollution in Europe. METHODS AND RESULTS: The new hazard ratio functions have been combined with ambient air pollution exposure data to estimate the impacts in Europe and the 28 countries of the European Union (EU-28). The annual excess mortality rate from ambient air pollution in Europe is 790 000 [95% confidence interval (95% CI) 645 000-934 000], and 659 000 (95% CI 537 000-775 000) in the EU-28. Between 40% and 80% are due to cardiovascular events, which dominate health outcomes. The upper limit includes events attributed to other non-communicable diseases, which are currently not specified. These estimates exceed recent analyses, such as the Global Burden of Disease for 2015, by more than a factor of two. We estimate that air pollution reduces the mean life expectancy in Europe by about 2.2 years with an annual, attributable per capita mortality rate in Europe of 133/100 000 per year. CONCLUSION: We provide new data based on novel hazard ratio functions suggesting that the health impacts attributable to ambient air pollution in Europe are substantially higher than previously assumed, though subject to considerable uncertainty. Our results imply that replacing fossil fuels by clean, renewable energy sources could substantially reduce the loss of life expectancy from air pollution.


Asunto(s)
Contaminación del Aire , Enfermedades Cardiovasculares , Exposición a Riesgos Ambientales , Contaminación del Aire/efectos adversos , Contaminación del Aire/estadística & datos numéricos , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/mortalidad , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Europa (Continente) , Humanos , Modelos de Riesgos Proporcionales
2.
BMJ ; 383: e077784, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030155

RESUMEN

OBJECTIVES: To estimate all cause and cause specific deaths that are attributable to fossil fuel related air pollution and to assess potential health benefits from policies that replace fossil fuels with clean, renewable energy sources. DESIGN: Observational and modelling study. METHODS: An updated atmospheric composition model, a newly developed relative risk model, and satellite based data were used to determine exposure to ambient air pollution, estimate all cause and disease specific mortality, and attribute them to emission categories. DATA SOURCES: Data from the global burden of disease 2019 study, observational fine particulate matter and population data from National Aeronautics and Space Administration (NASA) satellites, and atmospheric chemistry, aerosol, and relative risk modelling for 2019. RESULTS: Globally, all cause excess deaths due to fine particulate and ozone air pollution are estimated at 8.34 million (95% confidence interval 5.63 to 11.19) deaths per year. Most (52%) of the mortality burden is related to cardiometabolic conditions, particularly ischaemic heart disease (30%). Stroke and chronic obstructive pulmonary disease both account for 16% of mortality burden. About 20% of all cause mortality is undefined, with arterial hypertension and neurodegenerative diseases possibly implicated. An estimated 5.13 million (3.63 to 6.32) excess deaths per year globally are attributable to ambient air pollution from fossil fuel use and therefore could potentially be avoided by phasing out fossil fuels. This figure corresponds to 82% of the maximum number of air pollution deaths that could be averted by controlling all anthropogenic emissions. Smaller reductions, rather than a complete phase-out, indicate that the responses are not strongly non-linear. Reductions in emission related to fossil fuels at all levels of air pollution can decrease the number of attributable deaths substantially. Estimates of avoidable excess deaths are markedly higher in this study than most previous studies for these reasons: the new relative risk model has implications for high income (largely fossil fuel intensive) countries and for low and middle income countries where the use of fossil fuels is increasing; this study accounts for all cause mortality in addition to disease specific mortality; and the large reduction in air pollution from a fossil fuel phase-out can greatly reduce exposure. CONCLUSION: Phasing out fossil fuels is deemed to be an effective intervention to improve health and save lives as part the United Nations' goal of climate neutrality by 2050. Ambient air pollution would no longer be a leading, environmental health risk factor if the use of fossil fuels were superseded by equitable access to clean sources of renewable energy.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Humanos , Combustibles Fósiles/efectos adversos , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Ozono/efectos adversos , Ozono/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Renta , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis
3.
Nat Commun ; 14(1): 1893, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072387

RESUMEN

Atmospheric ozone and oxygen protect the terrestrial biosphere against harmful ultraviolet (UV) radiation. Here, we model atmospheres of Earth-like planets hosted by stars with near-solar effective temperatures (5300 to 6300 K) and a broad range of metallicities covering known exoplanet host stars. We show that paradoxically, although metal-rich stars emit substantially less ultraviolet radiation than metal-poor stars, the surface of their planets is exposed to more intense ultraviolet radiation. For the stellar types considered, metallicity has a larger impact than stellar temperature. During the evolution of the universe, newly formed stars have progressively become more metal-rich, exposing organisms to increasingly intense ultraviolet radiation. Our findings imply that planets hosted by stars with low metallicity are the best targets to search for complex life on land.

4.
Environ Int ; 159: 107020, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34894485

RESUMEN

Chronic exposure to fine particulate matter (PM2.5) poses a major global health risk, commonly assessed by assuming equivalent toxicity for different PM2.5 constituents. We used a data-informed global atmospheric model and recent exposure-response functions to calculate the health burden of ambient PM2.5 from ten source categories. We estimate 4.23 (95% confidence interval 3.0-6.14) million excess deaths annually from the exposure to ambient PM2.5. We distinguished contributions and major sources of black carbon (BC), primary organic aerosols (POA) and anthropogenic secondary organic aerosols (aSOA). These components make up to ∼20% of the total PM2.5 in South and East Asia and East Africa. We find that domestic energy use by the burning of solid biofuels is the largest contributor to ambient BC, POA and aSOA globally. Epidemiological and toxicological studies indicate that these compounds may be relatively more hazardous than other PM2.5 compounds such as soluble salts, related to their high potential to inflict oxidative stress. We performed sensitivity analyses by considering these species to be more harmful compared to other compounds in PM2.5, as suggested by their oxidative potential using a range of potential relative risks. These analyses show that domestic energy use emerges as the leading cause of excess mortality attributable to ambient PM2.5, notably in Asia and Africa. We acknowledge the uncertainties inherent in our assumed enhanced toxicity of the anthropogenic organic and BC aerosol components, which suggest the need to better understand the mechanisms and magnitude of the associated health risks and the consequences for regulatory policies. However our assessment of the importance of emissions from domestic energy use as a cause of premature mortality is robust to a range of assumptions about the magnitude of the excess risk.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles/toxicidad , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/estadística & datos numéricos , Carbono , Monitoreo del Ambiente , Salud Global , Material Particulado/análisis , Material Particulado/toxicidad
5.
Phys Rev Lett ; 97(22): 220405, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17155784

RESUMEN

We compute Casimir forces in open geometries with edges, involving parallel as well as perpendicular semi-infinite plates. We focus on Casimir configurations which are governed by a unique dimensional scaling law with a universal coefficient. With the aid of worldline numerics, we determine this coefficient for various geometries for the case of scalar-field fluctuations with Dirichlet boundary conditions. Our results facilitate an estimate of the systematic error induced by the edges of finite plates, for instance, in a standard parallel-plate experiment. The Casimir edge effects for this case can be reformulated as an increase of the effective area of the configuration.

6.
Phys Rev Lett ; 96(22): 220401, 2006 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-16803290

RESUMEN

We compute Casimir interaction energies for the sphere-plate and cylinder-plate configuration induced by scalar-field fluctuations with Dirichlet boundary conditions. Based on a high-precision calculation using world-line numerics, we quantitatively determine the validity bounds of the proximity-force approximation (PFA) on which the comparison between all corresponding experiments and theory are based. We observe the quantitative failure of the PFA on the 1% level for a curvature parameter a/R>0.00755. Even qualitatively, the PFA fails to predict reliably the correct sign of genuine Casimir curvature effects. We conclude that data analysis of future experiments aiming at a precision of 0.1% must no longer be based on the PFA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA