Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(30): 20663-20671, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39041061

RESUMEN

Presented in this work is a thorough determination of the transition states between the different isomers of cyclic tetra-atomic silicon carbide, germanium carbide, and germanium silicide clusters. Through use of density functional theory (B3LYP-D3BJ, M06-2X, ωB97X-D4, and B2GP-PLYP) in conjunction with the aug-cc-pVTZ basis set, transition state structures and their barrier heights are determined for the interconversions between the various isomers for the family of tetra-atomic SiC, GeC, and GeSi compounds. SiC dust grains are known to be prevalent in interstellar dust, and among this group, so far only diamond-shaped (d-)SiC3 has been detected in the interstellar medium (ISM). Determining which other structures might be detectable not only depends on their intrinsic spectroscopic features, but whether or not they are likely to exist as isomers in interstellar environments. By examining the energy barrier heights for transitions between isomers, we determined that many of these structures are unlikely to exhibit interconversion in the ISM, outside of hotter circumstellar environments. Although Boltzmann population ratios at approximate circumstellar temperatures suggest the presence of higher energy minima, it is likely that once interconversion happens, as molecules travel away from a star and cool, they will get kinetically trapped in the potential energy well they inhabit, making how the ratios freeze out dependent on the time and pathways the molecules take to cool down. As such, many of these higher energy minima may still be good candidates for detection including (rhomboidal) r-SiC3, r-GeC3, r-GeSi3, (trapezoidal) t-Si2C2, r-Ge2C2, and d-Si3C.

2.
J Phys Chem A ; 128(27): 5351-5361, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38942734

RESUMEN

An extensive, high-level theoretical study on tetra-atomic germanium carbide/silicide clusters is presented. Accurate harmonic and anharmonic vibrational frequencies and rotational constants are calculated at the CCSD(T)-F12a(b)/cc-pVT(Q)Z-F12 levels of theory. With growing capabilities to discern more of the chemical composition of the interstellar medium (ISM), an accurate database of reference material is required. The presence of carbon is ubiquitous in the ISM, and silicon is known to be present in interstellar dust grains; however, germanium-containing molecules remain elusive. To begin understanding the presence and role of germanium in the ISM, we present this study of the vibrational and rotational spectroscopic properties of various germanium-containing molecules to aid in their potential identification in the ISM with modern observational tools such as the James Webb Space Telescope. Structures studied herein include rhomboidal (r-), diamond (d-), and trapezoidal (t-) tetra-atomic molecules of the form GexC4-x and GexSi4-x, where x = 0-4. The most promising structure for detection is r-Ge2C2 via the ν4 mode with a frequency of 802.7 cm-1 (12.5 µm) and an intensity of 307.2 km mol-1. Other molecules that are potentially detectable, i.e., through vibrational modes or rotational transitions, include r-Ge3C, r-GeSi3, d-GeC3, r-GeC3, and t-Ge2C2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA