Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biochem Soc Trans ; 49(1): 253-267, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33544118

RESUMEN

The RAF-MEK-ERK mitogen-activated protein kinase (MAPK) cascade is aberrantly activated in a diverse set of human cancers and the RASopathy group of genetic developmental disorders. This protein kinase cascade is one of the most intensely studied cellular signaling networks and has been frequently targeted by the pharmaceutical industry, with more than 30 inhibitors either approved or under clinical evaluation. The ERK-MAPK cascade was originally depicted as a serial and linear, unidirectional pathway that relays extracellular signals, such as mitogenic stimuli, through the cytoplasm to the nucleus. However, we now appreciate that this three-tiered protein kinase cascade is a central core of a complex network with dynamic signaling inputs and outputs and autoregulatory loops. Despite our considerable advances in understanding the ERK-MAPK network, the ability of cancer cells to adapt to the inhibition of key nodes reveals a level of complexity that remains to be fully understood. In this review, we summarize important developments in our understanding of the ERK-MAPK network and identify unresolved issues for ongoing and future study.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Mapas de Interacción de Proteínas/fisiología , Proteínas ras/fisiología , Animales , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas ras/metabolismo
2.
Hum Mol Genet ; 21(24): 5268-79, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22965878

RESUMEN

Inherited mutations in the folliculin (FLCN) gene cause the Birt-Hogg-Dubé syndrome of familial hair follicle tumours (fibrofolliculomas), lung cysts and kidney tumours. Though folliculin has features of a tumour suppressor, the precise function of the FLCN gene product is not well characterized. We identified plakophilin-4 (p0071) as a potential novel folliculin interacting protein by yeast two-hybrid analysis. We confirmed the interaction of folliculin with p0071 by co-immunoprecipitation studies and, in view of previous studies linking p0071 to the regulation of rho-signalling, cytokinesis and intercellular junction formation, we investigated the effect of cell folliculin status on p0071-related functions. Folliculin and p0071 partially co-localized at cell junctions and in mitotic cells, at the midbody during cytokinesis. Previously, p0071 has been reported to regulate RhoA signalling during cytokinesis and we found that folliculin deficiency was associated with increased expression and activity of RhoA and evidence of disordered cytokinesis. Treatment of folliculin-deficient cells with a downstream inhibitor of RhoA signalling (the ROCK inhibitor Y-27632) reversed the increased cell migration phenotype observed in folliculin-deficient cells. Deficiency of folliculin and of p0071 resulted in tight junction defects and mislocalization of E-cadherin in mouse inner medullary collecting duct-3 renal tubular cells. These findings suggest that aspects of folliculin tumour suppressor function are linked to interaction with p0071 and the regulation of RhoA signalling.


Asunto(s)
Estrona/metabolismo , Placofilinas/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Movimiento Celular/genética , Movimiento Celular/fisiología , Citocinesis/genética , Citocinesis/fisiología , Estrona/genética , Humanos , Inmunoprecipitación , Microscopía Fluorescente , Placofilinas/genética , Unión Proteica/genética , Unión Proteica/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética , Transducción de Señal/fisiología , Técnicas del Sistema de Dos Híbridos , Proteína de Unión al GTP rhoA/genética
3.
Cell Rep ; 37(9): 110060, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34852220

RESUMEN

We apply genetic screens to delineate modulators of KRAS mutant pancreatic ductal adenocarcinoma (PDAC) sensitivity to ERK inhibitor treatment, and we identify components of the ATR-CHK1 DNA damage repair (DDR) pathway. Pharmacologic inhibition of CHK1 alone causes apoptotic growth suppression of both PDAC cell lines and organoids, which correlates with loss of MYC expression. CHK1 inhibition also activates ERK and AMPK and increases autophagy, providing a mechanistic basis for increased efficacy of concurrent CHK1 and ERK inhibition and/or autophagy inhibition with chloroquine. To assess how CHK1 inhibition-induced ERK activation promotes PDAC survival, we perform a CRISPR-Cas9 loss-of-function screen targeting direct/indirect ERK substrates and identify RIF1. A key component of non-homologous end joining repair, RIF1 suppression sensitizes PDAC cells to CHK1 inhibition-mediated apoptotic growth suppression. Furthermore, ERK inhibition alone decreases RIF1 expression and phenocopies RIF1 depletion. We conclude that concurrent DDR suppression enhances the efficacy of ERK and/or autophagy inhibitors in KRAS mutant PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Daño del ADN , Mutación , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Apoptosis , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Proliferación Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Humanos , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
4.
BMC Res Notes ; 5: 370, 2012 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-22824328

RESUMEN

BACKGROUND: High-throughput methods that ascribe a cellular or physiological function for each gene product are useful to understand the roles of genes that have not been extensively characterized by molecular or genetic approaches. One method to infer gene function is "guilt-by-association", in which the expression pattern of a poorly characterized gene is shown to co-vary with the expression of better-characterized genes. The function of the poorly characterized gene is inferred from the known function(s) of the well-described genes. For example, genes co-expressed with transcripts that vary during the cell cycle, development, environmental stresses, and with oncogenesis have been implicated in those processes. FINDINGS: While examining the expression characteristics of several poorly characterized genes, we noted that we could associate each of the genes with a cellular phenotype by correlating individual gene expression changes with gene set enrichment scores from individual samples. We evaluated the effectiveness of this approach using a modest sized gene expression data set (expO) and a compendium of gene expression phenotypes (MSigDBv3.0). We found the transcripts that correlated best with enrichment in mitochondrial and lysosomal gene sets were mostly related to those processes (89/100 and 44/50, respectively). The reciprocal evaluation, ranking gene sets according to correlation of enrichment with an individual gene's expression, also reflected known associations for prominent genes in the biomedical literature (16/19). In evaluating the model, we also found that 4% of the genome encodes proteins that are associated with small molecule and small peptide signal transduction gene sets, implicating a large number of genes in both internal and external environmental sensing. CONCLUSIONS: Our results show that this approach is useful to infer functions of disparate sets of genes. This method mirrors the biological experimental approaches used by others to associate individual genes with defined gene expression changes. Moreover, the approach can be used beyond discovering genes related to a cellular process to discover meaningful expression phenotypes from a compendium that are associated with a given gene. The effectiveness, versatility, and breadth of this approach make possible its application in a variety of contexts and with a variety of downstream analyses.


Asunto(s)
Genes Mitocondriales , Genoma Humano , Modelos Logísticos , Mitocondrias/genética , Modelos Genéticos , ARN Mensajero/genética , Algoritmos , Bases de Datos Genéticas , Expresión Génica , Perfilación de la Expresión Génica , Interacción Gen-Ambiente , Estudio de Asociación del Genoma Completo , Humanos , Lisosomas/genética
5.
Mol Cell Biol ; 31(7): 1357-68, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21262771

RESUMEN

Evasion of apoptosis is a significant problem affecting an array of cancers. In order to identify novel regulators of apoptosis, we performed an RNA interference (RNAi) screen against all kinases and phosphatases in the human genome. We identified MK-STYX (STYXL1), a catalytically inactive phosphatase with homology to the mitogen-activated protein kinase (MAPK) phosphatases. Despite this homology, MK-STYX knockdown does not significantly regulate MAPK signaling in response to growth factors or apoptotic stimuli. Rather, RNAi-mediated knockdown of MK-STYX inhibits cells from undergoing apoptosis induced by cellular stressors activating mitochondrion-dependent apoptosis. This MK-STYX phenotype mimics the loss of Bax and Bak, two potent guardians of mitochondrial apoptotic potential. Similar to loss of both Bax and Bak, cells without MK-STYX expression are unable to release cytochrome c. Proapoptotic members of the BCL-2 family (Bax, Bid, and Bim) are unable to trigger cytochrome c release in MK-STYX-depleted cells, placing the apoptotic deficiency at the level of mitochondrial outer membrane permeabilization (MOMP). MK-STYX was found to localize to the mitochondria but is neither released from the mitochondria upon apoptotic stress nor proximal to the machinery currently known to control MOMP, indicating that MK-STYX regulates MOMP using a distinct mechanism.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Biocatálisis , Mitocondrias/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Biocatálisis/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
6.
BMC Med Genomics ; 3: 59, 2010 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-21162720

RESUMEN

BACKGROUND: Germline mutations in the folliculin (FLCN) gene are associated with the development of Birt-Hogg-Dubé syndrome (BHDS), a disease characterized by papular skin lesions, a high occurrence of spontaneous pneumothorax, and the development of renal neoplasias. The majority of renal tumors that arise in BHDS-affected individuals are histologically similar to sporadic chromophobe renal cell carcinoma (RCC) and sporadic renal oncocytoma. However, most sporadic tumors lack FLCN mutations and the extent to which the BHDS-derived renal tumors share genetic defects associated with the sporadic tumors has not been well studied. METHODS: BHDS individuals were identified symptomatically and FLCN mutations were confirmed by DNA sequencing. Comparative gene expression profiling analyses were carried out on renal tumors isolated from individuals afflicted with BHDS and a panel of sporadic renal tumors of different subtypes using discriminate and clustering approaches. qRT-PCR was used to confirm selected results of the gene expression analyses. We further analyzed differentially expressed genes using gene set enrichment analysis and pathway analysis approaches. Pathway analysis results were confirmed by generation of independent pathway signatures and application to additional datasets. RESULTS: Renal tumors isolated from individuals with BHDS showed distinct gene expression and cytogenetic characteristics from sporadic renal oncocytoma and chromophobe RCC. The most prominent molecular feature of BHDS-derived kidney tumors was high expression of mitochondria-and oxidative phosphorylation (OXPHOS)-associated genes. This mitochondria expression phenotype was associated with deregulation of the PGC-1α-TFAM signaling axis. Loss of FLCN expression across various tumor types is also associated with increased nuclear mitochondrial gene expression. CONCLUSIONS: Our results support a genetic distinction between BHDS-associated tumors and other renal neoplasias. In addition, deregulation of the PGC-1α-TFAM signaling axis is most pronounced in renal tumors that harbor FLCN mutations and in tumors from other organs that have relatively low expression of FLCN. These results are consistent with the recently discovered interaction between FLCN and AMPK and support a model in which FLCN is a regulator of mitochondrial function.


Asunto(s)
Síndrome de Birt-Hogg-Dubé/genética , Genes Mitocondriales , Neoplasias Renales/genética , Regulación hacia Arriba , Adenoma Oxifílico/genética , Carcinoma de Células Renales/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteínas Proto-Oncogénicas/genética , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA