Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Immunity ; 32(2): 240-52, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20153221

RESUMEN

Injury to the central nervous system initiates an uncontrolled inflammatory response that results in both tissue repair and destruction. Here, we showed that, in rodents and humans, injury to the spinal cord triggered surface expression of CD95 ligand (CD95L, FasL) on peripheral blood myeloid cells. CD95L stimulation of CD95 on these cells activated phosphoinositide 3-kinase (PI3K) and metalloproteinase-9 (MMP-9) via recruitment and activation of Syk kinase, ultimately leading to increased migration. Exclusive CD95L deletion in myeloid cells greatly decreased the number of neutrophils and macrophages infiltrating the injured spinal cord or the inflamed peritoneum after thioglycollate injection. Importantly, deletion of myeloid CD95L, but not of CD95 on neural cells, led to functional recovery of spinal injured animals. Our results indicate that CD95L acts on peripheral myeloid cells to induce tissue damage. Thus, neutralization of CD95L should be considered as a means to create a controlled beneficial inflammatory response.


Asunto(s)
Movimiento Celular , Proteína Ligando Fas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Mieloides/metabolismo , Peritonitis/inmunología , Proteínas Tirosina Quinasas/metabolismo , Animales , Células Cultivadas , Proteína Ligando Fas/genética , Proteína Ligando Fas/inmunología , Humanos , Inflamación , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/inmunología , Células Mieloides/patología , Peritoneo/inmunología , Peritoneo/patología , Peritonitis/inducido químicamente , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Médula Espinal/inmunología , Médula Espinal/patología , Quinasa Syk , Tioglicolatos/administración & dosificación
2.
Nat Med ; 10(4): 389-95, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15004554

RESUMEN

The clinical outcome of spinal cord injury (SCI) depends in part on the extent of secondary damage, to which apoptosis contributes. The CD95 and tumor necrosis factor (TNF) ligand/receptor systems play an essential role in various apoptotic mechanisms. To determine the involvement of these ligands in SCI-induced damage, we neutralized the activity of CD95 ligand (CD95L) and/or TNF in spinal cord-injured mice. Therapeutic neutralization of CD95L, but not of TNF, significantly decreased apoptotic cell death after SCI. Mice treated with CD95L-specific antibodies were capable of initiating active hind-limb movements several weeks after injury. The improvement in locomotor performance was mirrored by an increase in regenerating fibers and upregulation of growth-associated protein-43 (GAP-43). Thus, neutralization of CD95L promoted axonal regeneration and functional improvement in injured adult animals. This therapeutic strategy may constitute a potent future treatment for human spinal injury.


Asunto(s)
Axones/fisiología , Glicoproteínas de Membrana/antagonistas & inhibidores , Regeneración , Traumatismos de la Médula Espinal/fisiopatología , Animales , Supervivencia Celular , Proteína Ligando Fas , Ratones , Neuronas/citología , Pruebas de Neutralización , Oligodendroglía/citología , Traumatismos de la Médula Espinal/patología
3.
J Neurochem ; 113(4): 930-42, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20202082

RESUMEN

Granulocyte-colony stimulating factor (G-CSF) is a potent hematopoietic factor that drives differentiation of neutrophilic granulocytes. We have recently shown that G-CSF also acts as a neuronal growth factor, protects neurons in vitro and in vivo, and has regenerative potential in various neurological disease models. Spinal cord injury (SCI) following trauma or secondary to skeletal instability is a terrible condition with no effective therapies available at present. In this study, we show that the G-CSF receptor is up-regulated upon experimental SCI and that G-CSF improves functional outcome in a partial dissection model of SCI. G-CSF significantly decreases apoptosis in an experimental partial spinal transsection model in the mouse and increases expression of the anti-apoptotic G-CSF target gene Bcl-X(L). In vitro, G-CSF enhances neurite outgrowth and branching capacity of hippocampal neurons. In vivo, G-CSF treatment results in improved functional connectivity of the injured spinal cord as measured by Mn(2+)-enhanced MRI. G-CSF also increased length of the dorsal corticospinal tract and density of serotonergic fibers cranial to the lesion center. Mice treated systemically with G-CSF as well as transgenic mice over-expressing G-CSF in the CNS exhibit a strong improvement in functional outcome as measured by the BBB score and gridwalk analysis. We show that G-CSF improves outcome after experimental SCI by counteracting apoptosis, and enhancing connectivity in the injured spinal cord. We conclude that G-CSF constitutes a promising and feasible new therapy option for SCI.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/farmacología , Factores de Crecimiento Nervioso/farmacología , Fármacos Neuroprotectores/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/fisiología , Conos de Crecimiento/ultraestructura , Ratones , Factores de Crecimiento Nervioso/uso terapéutico , Neuritas/efectos de los fármacos , Neuritas/ultraestructura , Fármacos Neuroprotectores/uso terapéutico , Tractos Piramidales/efectos de los fármacos , Tractos Piramidales/lesiones , Tractos Piramidales/fisiología , Ratas , Ratas Wistar , Receptores de Factor Estimulante de Colonias de Granulocito/efectos de los fármacos , Receptores de Factor Estimulante de Colonias de Granulocito/metabolismo , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Resultado del Tratamiento , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología , Proteína bcl-X/efectos de los fármacos , Proteína bcl-X/metabolismo
4.
J Mol Med (Berl) ; 83(9): 657-71, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16075258

RESUMEN

The spinal cord can be compared to a highway connecting the brain with the different body levels lying underneath, with the axons being the ultimate carriers of the electrical impulse. After spinal cord injury (SCI), many cells are lost because of the injury. To reconstitute function, damaged axons from surviving neurons have to grow through the lesion site to their initial targets. However, the territory they have to traverse has changed: the highway is full of inhibitory signals (myelin and scar components); the pavement itself has become bumpy (demyelination); and specialized cells are recruited to clear the way (inflammatory cells). Thus, actual strategies to treat spinal injuries aim at providing a permissive environment for regenerating axons and boosting the endogenous potential of axons to regenerate while limiting progression of secondary damage. Here we review some of the strategies currently under consideration to treat spinal injuries.


Asunto(s)
Axones/metabolismo , Regeneración Nerviosa , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Animales , Cicatriz/metabolismo , Humanos , Inflamación/metabolismo , Vaina de Mielina/metabolismo , Transducción de Señal , Traumatismos de la Médula Espinal/tratamiento farmacológico
5.
J Vis Exp ; (86)2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24835574

RESUMEN

Multiple processes are involved in gene expression including transcription, translation and stability of mRNAs and proteins. Each of these steps are tightly regulated, affecting the final dynamics of protein abundance. Various regulatory mechanisms exist at the translation step, rendering mRNA levels alone an unreliable indicator of gene expression. In addition, local regulation of mRNA translation has been particularly implicated in neuronal functions, shifting 'translatomics' to the focus of attention in neurobiology. The presented method can be used to bridge transcriptomics and proteomics. Here we describe essential modifications to the technique of polyribosome fractionation, which interrogates the translatome based on the association of actively translated mRNAs to multiple ribosomes and their differential sedimentation in sucrose gradients. Traditionally, working with in vivo samples, particularly of the central nervous system (CNS), has proven challenging due to the restricted amounts of material and the presence of fatty tissue components. In order to address this, the described protocol is specifically optimized for use with minimal amount of CNS material, as demonstrated by the use of single mouse spinal cord and brain. Briefly, CNS tissues are extracted and translating ribosomes are immobilized on mRNAs with cycloheximide. Myelin flotation is then performed to remove lipid rich components. Fractionation is performed on a sucrose gradient where mRNAs are separated according to their ribosomal loading. Isolated fractions are suitable for a range of downstream assays, including new genome wide assay technologies.


Asunto(s)
Fraccionamiento Celular/métodos , Sistema Nervioso Central/fisiología , Perfilación de la Expresión Génica/métodos , Polirribosomas/química , Animales , Sistema Nervioso Central/química , Ratones , Polirribosomas/genética , Biosíntesis de Proteínas , ARN/análisis , ARN/genética , Transcripción Genética
6.
Cell Stem Cell ; 5(2): 178-90, 2009 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19664992

RESUMEN

Adult neurogenesis persists in the subventricular zone and the dentate gyrus and can be induced upon central nervous system injury. However, the final contribution of newborn neurons to neuronal networks is limited. Here we show that in neural stem cells, stimulation of the "death receptor" CD95 does not trigger apoptosis but unexpectedly leads to increased stem cell survival and neuronal specification. These effects are mediated via activation of the Src/PI3K/AKT/mTOR signaling pathway, ultimately leading to a global increase in protein translation. Induction of neurogenesis by CD95 was further confirmed in the ischemic CA1 region, in the naive dentate gyrus, and after forced expression of CD95L in the adult subventricular zone. Lack of hippocampal CD95 resulted in a reduction in neurogenesis and working memory deficits. Following global ischemia, CD95-mediated brain repair rescued behavioral impairment. Thus, we identify the CD95/CD95L system as an instructive signal for ongoing and injury-induced neurogenesis.


Asunto(s)
Células Madre Adultas/metabolismo , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Proteína Ligando Fas/metabolismo , Neurogénesis/fisiología , Receptor fas/metabolismo , Células Madre Adultas/trasplante , Animales , Isquemia Encefálica/terapia , Femenino , Expresión Génica/fisiología , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal/fisiología , Trasplante de Células Madre , Serina-Treonina Quinasas TOR
7.
Cancer Cell ; 13(3): 235-48, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18328427

RESUMEN

Invasion of surrounding brain tissue by isolated tumor cells represents one of the main obstacles to a curative therapy of glioblastoma multiforme. Here we unravel a mechanism regulating glioma infiltration. Tumor interaction with the surrounding brain tissue induces CD95 Ligand expression. Binding of CD95 Ligand to CD95 on glioblastoma cells recruits the Src family member Yes and the p85 subunit of phosphatidylinositol 3-kinase to CD95, which signal invasion via the glycogen synthase kinase 3-beta pathway and subsequent expression of matrix metalloproteinases. In a murine syngeneic model of intracranial GBM, neutralization of CD95 activity dramatically reduced the number of invading cells. Our results uncover CD95 as an activator of PI3K and, most importantly, as a crucial trigger of basal invasion of glioblastoma in vivo.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Proteína Ligando Fas/metabolismo , Glioblastoma/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-yes/metabolismo , Transducción de Señal , Receptor fas/metabolismo , Animales , Apoptosis , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Glioblastoma/enzimología , Glioblastoma/genética , Glioblastoma/inmunología , Glioblastoma/patología , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Ratones , Invasividad Neoplásica , Trasplante de Neoplasias , Proteínas Proto-Oncogénicas c-yes/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Trasplante Isogénico , Células Tumorales Cultivadas , Familia-src Quinasas/metabolismo
8.
Magn Reson Med ; 55(5): 1124-31, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16602070

RESUMEN

In past decades, much effort has been invested in developing therapies for spinal injuries. Lack of standardization of clinical read-out measures, however, makes direct comparison of experimental therapies difficult. Damage and therapeutic effects in vivo are routinely evaluated using rather subjective behavioral tests. Here we show that manganese-enhanced magnetic resonance imaging (MEMRI) can be used to examine the extent of damage following spinal cord injury (SCI) in mice in vivo. Injection of MnCl2 solution into the cerebrospinal fluid leads to manganese uptake into the spinal cord. Furthermore, after injury MEMRI-derived quantitative measures correlate closely with clinical locomotor scores. Improved locomotion due to treating the detrimental effects of SCI with an established therapy (neutralization of CD95Ligand) is reflected in an increase of manganese uptake into the injured spinal cord. Therefore, we demonstrate that MEMRI is a sensitive and objective tool for in vivo visualization and quantification of damage and functional improvement after SCI. Thus, MEMRI can serve as a reproducible surrogate measure of the clinical status of the spinal cord in mice, potentially becoming a standard approach for evaluating experimental therapies.


Asunto(s)
Cloruros , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Compuestos de Manganeso , Recuperación de la Función , Índice de Severidad de la Enfermedad , Traumatismos de la Médula Espinal/diagnóstico , Médula Espinal/patología , Algoritmos , Animales , Medios de Contraste , Aumento de la Imagen/métodos , Almacenamiento y Recuperación de la Información/métodos , Ratones , Evaluación de Resultado en la Atención de Salud/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA