Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Cell Proteomics ; 20: 100038, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33515807

RESUMEN

Sporozoites are a motile form of malaria-causing Plasmodium falciparum parasites that migrate from the site of transmission in the dermis through the bloodstream to invade hepatocytes. Sporozoites interact with many cells within the host, but the molecular identity of these interactions and their role in the pathology of malaria is poorly understood. Parasite proteins that are secreted and embedded within membranes are known to be important for these interactions, but our understanding of how they interact with each other to form functional complexes is largely unknown. Here, we compile a library of recombinant proteins representing the repertoire of cell surface and secreted proteins from the P. falciparum sporozoite and use an assay designed to detect extracellular interactions to systematically identify complexes. We identify three protein complexes including an interaction between two components of the p24 complex that is involved in the trafficking of glycosylphosphatidylinositol-anchored proteins through the secretory pathway. Plasmodium parasites lacking either gene are strongly inhibited in the establishment of liver-stage infections. These findings reveal an important role for the p24 complex in malaria pathogenesis and show that the library of recombinant proteins represents a valuable resource to investigate P. falciparum sporozoite biology.


Asunto(s)
Interacciones Huésped-Parásitos , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Esporozoítos/metabolismo , Animales , Femenino , Malaria/parasitología , Ratones Endogámicos BALB C , Organismos Modificados Genéticamente , Fenotipo , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plasmodium falciparum/fisiología , Mapas de Interacción de Proteínas , Proteínas Protozoarias/genética , Proteínas Recombinantes/metabolismo , Esporozoítos/fisiología
2.
Biochem J ; 443(2): 397-405, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22242896

RESUMEN

The malaria parasite Plasmodium falciparum is able to synthesize de novo PLP (pyridoxal 5'-phosphate), the active form of vitamin B6. In the present study, we have shown that the de novo synthesized PLP is used by the parasite to detoxify 1O2 (singlet molecular oxygen), a highly destructive reactive oxygen species arising from haemoglobin digestion. The formation of 1O2 and the response of the parasite were monitored by live-cell fluorescence microscopy, by transcription analysis and by determination of PLP levels in the parasite. Pull-down experiments of transgenic parasites overexpressing the vitamin B6-biosynthetic enzymes PfPdx1 and PfPdx2 clearly demonstrated an interaction of the two proteins in vivo which results in an elevated PLP level from 12.5 µM in wild-type parasites to 36.6 µM in the PfPdx1/PfPdx2-overexpressing cells and thus to a higher tolerance towards 1O2. In contrast, by applying the dominant-negative effect on the cellular level using inactive mutants of PfPdx1 and PfPdx2, P. falciparum becomes susceptible to 1O2. Our results demonstrate clearly the crucial role of vitamin B6 biosynthesis in the detoxification of 1O2 in P. falciparum. Besides the known role of PLP as a cofactor of many essential enzymes, this second important task of the vitamin B6 de novo synthesis as antioxidant emphasizes the high potential of this pathway as a target of new anti-malarial drugs.


Asunto(s)
Estrés Oxidativo , Plasmodium falciparum/metabolismo , Vitamina B 6/biosíntesis , Datos de Secuencia Molecular , Transferasas de Grupos Nitrogenados/genética , Transferasas de Grupos Nitrogenados/metabolismo , Perileno/análogos & derivados , Perileno/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Regulación hacia Arriba
3.
Cell Microbiol ; 12(5): 677-91, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20070315

RESUMEN

As an intracellular proliferating parasite, Plasmodium falciparum exploits the human host to acquire nutrients. However, nutrients such as nucleotides and cofactors are mostly phosphorylated in the host cell cytosol and thus have to be dephosphorylated in order to be taken up by the parasite. Here we report the functional characterization of a unique secreted phosphatase in P. falciparum, which is expressed throughout the developmental stages in the red blood cell. We show that this enzyme, formerly described as anchoring glideosome-associated protein 50 (GAP50), reveals a broad substrate profile with preference for di- and triphosphates at pH 5-7. Bioinformatic studies of the protein sequence identified an N-terminal signal anchor (SA) as well as a C-terminal transmembrane domain. By means of live microscopy of parasites transfected with GFP-fusions of this secreted acid phosphatase (PfSAP), we demonstrate that PfSAP enters the secretory pathway en route to the parasite periphery - mediated by SA - and is subsequently engulfed into the food vacuole. We corroborate this with independent data where acid phosphatase activity is visualized in close proximity to hemozoin. The biochemical as well as the trafficking results support the proposed role of PfSAP in the acquisition of host nutrients by dephosphorylation.


Asunto(s)
Fosfatasa Ácida/metabolismo , Eritrocitos/parasitología , Proteínas de la Membrana/metabolismo , Plasmodium falciparum/enzimología , Plasmodium falciparum/metabolismo , Secuencia de Aminoácidos , Animales , Biología Computacional , Humanos , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Fosfatos/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Alineación de Secuencia , Especificidad por Sustrato
4.
Biochim Biophys Acta ; 1790(5): 347-50, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19272411

RESUMEN

BACKGROUND: Vitamin B6 synthesis requires a functional Pdx1 assembly that is dodecameric in vivo. We have previously shown that mutation of a catalytic lysine in the plasmodial Pdx1 protein results in a protein that is both inactive and hexameric in vitro. METHODS: Static and dynamic light scattering, circular dichroism, co-purification and enzyme assays are used to investigate the role of a glycine conserved in all Pdx1 family members. RESULTS: Static light scattering indicates that a glycine to alanine mutant is present as a hexamer in vitro. Subsequent circular dichroism experiments demonstrate that a significant change in secondary structure content is induced by this mutation. However, this mutant is still competent to bind and support Pdx2 activity. CONCLUSIONS: As the mutated glycine occupies an unrestricted region of the Ramachandran plot the additional stereo-chemical restrictions imposed on alanine residues strongly support our hypothesis that significant structural rearrangement of Pdx1 is required during the transition from hexamer to dodecamer. GENERAL SIGNIFICANCE: The presented results demonstrate that reduction in the mobility of this region in Pdx1 proteins is required for formation of the in vivo dodecamer, negatively affecting the activity of Pdx1, opening the possibility of allosteric Pdx1 inhibitors.


Asunto(s)
Secuencia Conservada , Glicina/metabolismo , Transferasas de Grupos Nitrogenados/metabolismo , Plasmodium falciparum/enzimología , Sustitución de Aminoácidos , Animales , Western Blotting , Dicroismo Circular , Activación Enzimática , Luz , Peso Molecular , Proteínas Mutantes/metabolismo , Transporte de Proteínas , Dispersión de Radiación
5.
Mol Biochem Parasitol ; 157(2): 241-3, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18067979

RESUMEN

Thiamine pyrophosphate (TPP), the active form of vitamin B1, is an essential cofactor for several enzymes. Humans depend exclusively on the uptake of vitamin B1, whereas bacteria, plants, fungi and the malaria parasite Plasmodium falciparum are able to synthesise thiamine monophosphate (TMP) de novo. TMP has to be dephosphorylated prior to pyrophosphorylation in order to obtain TPP. In P. falciparum the phosphatase capable to catalyse this reaction has been identified by analysis of the substrate specificity. The recombinant enzyme accepts beside vitamin B1 also nucleotides, phosphorylated sugars and the B6 vitamer pyridoxal 5'-phosphate. Vitamin B1 biosynthesis is known to occur in the cytosol. The cytosolic localisation of this phosphatase was verified by transfection of a GFP chimera construct. Stage specific Northern blot analysis of the phosphatase clearly identified an expression profile throughout the entire erythrocytic life cycle of P. falciparum and thereby emphasises the importance of dephosphorylation reactions within the malaria parasite.


Asunto(s)
4-Nitrofenilfosfatasa/genética , 4-Nitrofenilfosfatasa/metabolismo , Plasmodium falciparum/enzimología , Tiamina Monofosfato/metabolismo , Animales , Citosol/química , ADN Protozoario/química , ADN Protozoario/genética , Perfilación de la Expresión Génica , Microscopía Fluorescente , Datos de Secuencia Molecular , Nucleótidos/metabolismo , Piridoxal/análogos & derivados , Piridoxal/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Especificidad por Sustrato , Tiamina/metabolismo
6.
Trends Parasitol ; 29(11): 530-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24140295

RESUMEN

Human malaria is known to be transmitted strictly by anopheline mosquitoes. Culicine mosquitoes such as Aedes spp. and Culex spp. are important vectors of other human pathogens including viruses and filarial worms, but have never been observed to transmit mammalian malarias. Culicines do transmit avian malarias and, interestingly, allow partial development of mammalian-infectious Plasmodium parasites, implying that physiological barriers in the mosquitoes prevent parasite transmission. Although the mechanism(s) are not known, the mosquito immune system is probably involved in eliminating Plasmodium. However, Plasmodium has shown substantial capacity to adapt to new vectors, and current ecological changes caused by humans could promote adaptation of human-infectious Plasmodium parasites to culicines. Such an event could have widespread epidemiological implications and therefore merits attention.


Asunto(s)
Culex/parasitología , Vectores de Enfermedades , Malaria/transmisión , Plasmodium/fisiología , Animales , Anopheles/parasitología , Humanos
7.
PLoS One ; 8(5): e63387, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23658824

RESUMEN

Although Anopheles mosquitoes are the vectors for human Plasmodium spp., there are also other mosquito species-among them culicines (Culex spp., Aedes spp.)-present in malaria-endemic areas. Culicine mosquitoes transmit arboviruses and filarial worms to humans and are vectors for avian Plasmodium spp., but have never been observed to transmit human Plasmodium spp. When ingested by a culicine mosquito, parasites could either face an environment that does not allow development due to biologic incompatibility or be actively killed by the mosquito's immune system. In the latter case, the molecular mechanism of killing must be sufficiently powerful that Plasmodium is not able to overcome it. To investigate how human malaria parasites develop in culicine mosquitoes, we infected Culex quinquefasciatus with Plasmodium falciparum NF54 and monitored development of parasites in the blood bolus and midgut epithelium at different time points. Our results reveal that ookinetes develop in the midgut lumen of C. quinquefasciatus in slightly lower numbers than in Anopheles gambiae G3. After 30 hours, parasites have invaded the midgut and can be observed on the basal side of the midgut epithelium by confocal and transmission electron microscopy. Very few of the parasites in C. quinquefasciatus are alive, most of them are lysed. Eight days after the mosquito's blood meal, no oocysts can be found in C. quinquefasciatus. Our results suggest that the mosquito immune system could be involved in parasite killing early in development after ookinetes have crossed the midgut epithelium and come in contact with the mosquito hemolymph.


Asunto(s)
Culex/inmunología , Tracto Gastrointestinal/inmunología , Hemolinfa/inmunología , Estadios del Ciclo de Vida/fisiología , Plasmodium falciparum/crecimiento & desarrollo , Animales , Anopheles/inmunología , Anopheles/parasitología , Culex/parasitología , Femenino , Tracto Gastrointestinal/parasitología , Hemolinfa/parasitología , Especificidad del Huésped , Interacciones Huésped-Parásitos , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Plasmodium falciparum/ultraestructura
9.
PLoS One ; 4(2): e4406, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19197387

RESUMEN

The human malaria parasite Plasmodium falciparum is able to synthesize de novo pyridoxal 5-phosphate (PLP), a crucial cofactor, during erythrocytic schizogony. However, the parasite possesses additionally a pyridoxine/pyridoxal kinase (PdxK) to activate B6 vitamers salvaged from the host. We describe a strategy whereby synthetic pyridoxyl-amino acid adducts are channelled into the parasite. Trapped upon phosphorylation by the plasmodial PdxK, these compounds block PLP-dependent enzymes and thus impair the growth of P. falciparum. The novel compound PT3, a cyclic pyridoxyl-tryptophan methyl ester, inhibited the proliferation of Plasmodium very efficiently (IC(50)-value of 14 microM) without harming human cells. The non-cyclic pyridoxyl-tryptophan methyl ester PT5 and the pyridoxyl-histidine methyl ester PHME were at least one order of magnitude less effective or completely ineffective in the case of the latter. Modeling in silico indicates that the phosphorylated forms of PT3 and PT5 fit well into the PLP-binding site of plasmodial ornithine decarboxylase (PfODC), the key enzyme of polyamine synthesis, consistent with the ability to abolish ODC activity in vitro. Furthermore, the antiplasmodial effect of PT3 is directly linked to the capability of Plasmodium to trap this pyridoxyl analog, as shown by an increased sensitivity of parasites overexpressing PfPdxK in their cytosol, as visualized by GFP fluorescence.


Asunto(s)
Antimaláricos/farmacología , Malaria/parasitología , Parásitos/efectos de los fármacos , Parásitos/enzimología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Fosfato de Piridoxal/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Línea Celular , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Macaca mulatta , Malaria/enzimología , Modelos Moleculares , Ornitina Descarboxilasa/química , Inhibidores de la Ornitina Descarboxilasa , Parásitos/crecimiento & desarrollo , Pruebas de Sensibilidad Parasitaria , Fosforilación/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Transporte de Proteínas/efectos de los fármacos , Fosfato de Piridoxal/química , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato/efectos de los fármacos
10.
PLoS One ; 3(3): e1815, 2008 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-18350152

RESUMEN

BACKGROUND: Plants, fungi, bacteria and the apicomplexan parasite Plasmodium falciparum are able to synthesize vitamin B6 de novo, whereas mammals depend upon the uptake of this essential nutrient from their diet. The active form of vitamin B6 is pyridoxal 5-phosphate (PLP). For its synthesis two enzymes, Pdx1 and Pdx2, act together, forming a multimeric complex consisting of 12 Pdx1 and 12 Pdx2 protomers. METHODOLOGY/PRINCIPAL FINDINGS: Here we report amino acid residues responsible for stabilization of the structural and enzymatic integrity of the plasmodial PLP synthase, identified by using distinct mutational analysis and biochemical approaches. Residues R85, H88 and E91 (RHE) are located at the Pdx1:Pdx1 interface and play an important role in Pdx1 complex assembly. Mutation of these residues to alanine impedes both Pdx1 activity and Pdx2 binding. Furthermore, changing D26, K83 and K151 (DKK), amino acids from the active site of Pdx1, to alanine obstructs not only enzyme activity but also formation of the complex. In contrast to the monomeric appearance of the RHE mutant, alteration of the DKK residues results in a hexameric assembly, and does not affect Pdx2 binding or its activity. While the modelled position of K151 is distal to the Pdx1:Pdx1 interface, it affects the assembly of hexameric Pdx1 into a functional dodecamer, which is crucial for PLP synthesis. CONCLUSIONS/SIGNIFICANCE: Taken together, our data suggest that the assembly of a functional Pdx1:Pdx2 complex follows a defined pathway and that inhibition of this assembly results in an inactive holoenzyme.


Asunto(s)
Glutaminasa/metabolismo , Plasmodium falciparum/enzimología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Electroforesis en Gel de Poliacrilamida , Glutaminasa/química , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA