RESUMEN
Reactivation of BK polyomavirus (BKPyV) can cause significant kidney and bladder disease in immunocompromised patients. There are currently no effective, BKPyV-specific therapies. MAU868 is a novel, human immunoglobulin (Ig) G1 monoclonal antibody that binds the major capsid protein, VP1, of BKPyV with picomolar affinity, neutralizes infection by the 4 major BKPyV genotypes (EC50 ranging from 0.009-0.093 µg/mL; EC90 ranging from 0.102-4.160 µg/mL), and has comparable activity against variants with highly prevalent VP1 polymorphisms. No resistance-associated variants were identified in long-term selection studies, indicating a high in vitro barrier-to-resistance. The high-resolution crystal structure of MAU868 in complex with VP1 pentamer identified 3 key contact residues in VP1 (Y169, R170, and K172). A first-in-human study was conducted to assess the safety, tolerability, and pharmacokinetics of MAU868 following intravenous and subcutaneous administration to healthy adults in a randomized, placebo-controlled, double-blinded, single ascending dose design. MAU868 was safe and well-tolerated. All adverse events were grade 1 and resolved. The pharmacokinetics of MAU868 was typical of a human IgG, with dose-proportional systemic exposure and an elimination half-life ranging between 23 and 30 days. These results demonstrate the potential of MAU868 as a first-in-class therapeutic agent for the treatment or prevention of BKPyV disease.
RESUMEN
While vaccines and antivirals are now being deployed for the current SARS-CoV-2 pandemic, we require additional antiviral therapeutics to not only effectively combat SARS-CoV-2 and its variants, but also future coronaviruses. All coronaviruses have relatively similar genomes that provide a potential exploitable opening to develop antiviral therapies that will be effective against all coronaviruses. Among the various genes and proteins encoded by all coronaviruses, one particularly "druggable" or relatively easy-to-drug target is the coronavirus Main Protease (3CLpro or Mpro), an enzyme that is involved in cleaving a long peptide translated by the viral genome into its individual protein components that are then assembled into the virus to enable viral replication in the cell. Inhibiting Mpro with a small-molecule antiviral would effectively stop the ability of the virus to replicate, providing therapeutic benefit. In this study, we have utilized activity-based protein profiling (ABPP)-based chemoproteomic approaches to discover and further optimize cysteine-reactive pyrazoline-based covalent inhibitors for the SARS-CoV-2 Mpro. Structure-guided medicinal chemistry and modular synthesis of di- and tri-substituted pyrazolines bearing either chloroacetamide or vinyl sulfonamide cysteine-reactive warheads enabled the expedient exploration of structure-activity relationships (SAR), yielding nanomolar potency inhibitors against Mpro from not only SARS-CoV-2, but across many other coronaviruses. Our studies highlight promising chemical scaffolds that may contribute to future pan-coronavirus inhibitors.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Cisteína , Antivirales/farmacología , Antivirales/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Simulación del Acoplamiento MolecularRESUMEN
The anticancer agent indisulam inhibits cell proliferation by causing degradation of RBM39, an essential mRNA splicing factor. Indisulam promotes an interaction between RBM39 and the DCAF15 E3 ligase substrate receptor, leading to RBM39 ubiquitination and proteasome-mediated degradation. To delineate the precise mechanism by which indisulam mediates the DCAF15-RBM39 interaction, we solved the DCAF15-DDB1-DDA1-indisulam-RBM39(RRM2) complex structure to a resolution of 2.3 Å. DCAF15 has a distinct topology that embraces the RBM39(RRM2) domain largely via non-polar interactions, and indisulam binds between DCAF15 and RBM39(RRM2), coordinating additional interactions between the two proteins. Studies with RBM39 point mutants and indisulam analogs validated the structural model and defined the RBM39 α-helical degron motif. The degron is found only in RBM23 and RBM39, and only these proteins were detectably downregulated in indisulam-treated HCT116 cells. This work further explains how indisulam induces RBM39 degradation and defines the challenge of harnessing DCAF15 to degrade additional targets.
Asunto(s)
Antineoplásicos/farmacología , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas de Unión al ARN/química , Sulfonamidas/farmacología , Secuencias de Aminoácidos , Calorimetría , Clonación Molecular , Fluorometría , Células HCT116 , Células HEK293 , Humanos , Procesamiento de Imagen Asistido por Computador , Péptidos y Proteínas de Señalización Intracelular/genética , Cinética , Proteínas Nucleares/metabolismo , Péptidos/química , Mutación Puntual , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Proteoma , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
The outcome of patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL) is poor, particularly in patients ineligible for stem cell transplantation or who fail induction therapy or salvage therapy. The phase 1b portion of this open-label, dose-escalation (3+3+3 design) study examined the maximum tolerated dose (MTD) and preliminary safety and activity of the regimen in transplant-ineligible adults with histologically confirmed relapsed/refractory DLBCL after at least 1 prior therapy. Patients received once-daily 560 mg ibrutinib, 375 mg/m2 intravenous rituximab day 1 of cycles 1 to 6, and 10, 15, 20, or 25 mg lenalidomide days 1 to 21 of each 28-day cycle. Forty-five patients were treated; median time since diagnosis was 14.1 months, and 51% of the patients had non-germinal center B-cell-like (non-GCB) DLBCL, 33% had transformed DLBCL, 60% were refractory, and 27% were primary refractory. Because of dose-limiting toxicities, a de-escalation cohort (10 mg lenalidomide) was initiated, and with subsequent re-escalation up to 25 mg lenalidomide, the MTD was not reached. In response-evaluable patients, the overall response rate (ORR) was 44% (complete response [CR], 28%); among them, the ORR was 65% (CR, 41%) in non-GCB and 69% and 56% in relapsed (n = 16) and secondary refractory (n = 27) disease, respectively. Overall and for non-GCB, median response duration was 15.9 months, with 2 patients receiving therapy beyond 3 years. Phase 2 was initiated with 20 mg lenalidomide in relapsed/refractory non-GCB, whereas the phase 1b 25-mg lenalidomide cohort was being completed; an additional 25-mg cohort in phase 2 is currently ongoing. This study was registered at www.clinicaltrials.gov as #NCT02077166.
Asunto(s)
Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Lenalidomida/uso terapéutico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Rituximab/uso terapéutico , Adenina/análogos & derivados , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Esquema de Medicación , Femenino , Humanos , Lenalidomida/administración & dosificación , Lenalidomida/efectos adversos , Linfoma de Células B Grandes Difuso/patología , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Piperidinas , Pirazoles/administración & dosificación , Pirazoles/efectos adversos , Pirimidinas/administración & dosificación , Pirimidinas/efectos adversos , Rituximab/administración & dosificación , Rituximab/efectos adversos , Resultado del TratamientoRESUMEN
This phase 2 study evaluated the activity and safety of ibrutinib, a Bruton's tyrosine kinase inhibitor, plus rituximab in adults with previously untreated follicular lymphoma. Patients received once-daily ibrutinib 560 mg continuously plus once-weekly rituximab 375 mg/m2 for 4 weeks beginning Week 1 (Arm 1, n = 60) or Week 9 (following an 8-week ibrutinib lead-in) to explore biomarkers (Arm 2, n = 20). The primary endpoint was the best overall response rate (ORR). The median age was 58 years; most had an Eastern Cooperative Oncology Group Performance Status of 0 (74%) and Stage III/IV disease (84%). At a median study follow-up of 34 months in Arm 1 and 29 months in Arm 2, ORRs were 85% [95% confidence interval (CI) 73-93] and 75% (95% CI 51-91), respectively, with complete responses in 40% and 50%. The median duration of response was not reached in either arm; 30-month progression-free and overall survival rates were 67% and 97% (Arm 1) and 65% and 100% (Arm 2). The most common adverse events were fatigue, diarrhoea and nausea. Higher grade (Grade 3/4) haematological, haemorrhagic and cardiac events occurred infrequently. Ibrutinib plus rituximab was active and tolerable in first-line follicular lymphoma.
Asunto(s)
Adenina/análogos & derivados , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Linfoma Folicular/tratamiento farmacológico , Piperidinas/uso terapéutico , Rituximab/uso terapéutico , Adenina/farmacología , Adenina/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Femenino , Humanos , Linfoma Folicular/patología , Masculino , Persona de Mediana Edad , Piperidinas/farmacología , Rituximab/farmacologíaRESUMEN
Gram-negative bacteria possess a characteristic outer membrane, of which the lipid A constituent elicits a strong host immune response through the Toll-like receptor 4 complex, and acts as a component of the permeability barrier to prevent uptake of bactericidal compounds. Lipid A species comprise the bulk of the outer leaflet of the outer membrane and are produced through a multistep biosynthetic pathway conserved in most Gram-negative bacteria. The final steps in this pathway involve the secondary acylation of lipid A precursors. These are catalyzed by members of a superfamily of enzymes known as lysophospholipid acyltransferases (LPLATs), which are present in all domains of life and play important roles in diverse biological processes. To date, characterization of this clinically important class of enzymes has been limited by a lack of structural information and the availability of only low-throughput biochemical assays. In this work, we present the structure of the bacterial LPLAT protein LpxM, and we describe a high-throughput, label-free mass spectrometric assay to characterize acyltransferase enzymatic activity. Using our structure and assay, we identify an LPLAT thioesterase activity, and we provide experimental evidence to support an ordered-binding and "reset" mechanistic model for LpxM function. This work enables the interrogation of other bacterial acyltransferases' structure-mechanism relationships, and the assay described herein provides a foundation for quantitatively characterizing the enzymology of any number of clinically relevant LPLAT proteins.
Asunto(s)
Aciltransferasas/química , Aciltransferasas/metabolismo , Lípido A/química , Lípido A/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Secuencia de Consenso , Activación Enzimática , Bacterias Gramnegativas , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Posición Específica de Matrices de Puntuación , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Tioléster Hidrolasas/química , Tioléster Hidrolasas/metabolismoRESUMEN
Alterations in PI3K/AKT signaling are known to be implicated with tumorigenesis. The PI3 kinases family of lipid kinases has been an attractive therapeutic target for cancer treatment. Imidazopyridine compound 1, a potent, selective, and orally available pan-PI3K inhibitor, identified by scaffold morphing of a benzothiazole hit, was further optimized in order to achieve efficacy in a PTEN-deleted A2780 ovarian cancer mouse xenograft model. With a hypothesis that a planar conformation between the core and the 6-heteroaryl ring will allow for the accommodation of larger 5'-substituents in a hydrophobic area under P-loop, SAR efforts focused on 5'-alkoxy heteroaryl rings at the 6-position of imidazopyridine and imidazopyridazine cores that have the same dihedral angle of zero degrees. 6'-Alkoxy 5'-aminopyrazines in the imidazopyridine series were identified as the most potent compounds in the A2780 cell line. Compound 14 with 1,1,1-trifluoroisopropoxy group at 6'-position demonstrated excellent potency and selectivity, good oral exposure in rats and in vivo efficacy in A2780 tumor-bearing mouse. Also, we disclose the X-ray co-crystal structure of one enantiomer of compound 14 in PI3Kα, confirming that the trifluoromethyl group fits nicely in the hydrophobic hot spot under P-loop.
Asunto(s)
Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/química , Piridinas/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Sitios de Unión , Línea Celular Tumoral , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Activación Enzimática/efectos de los fármacos , Femenino , Semivida , Xenoinjertos , Humanos , Ratones , Simulación del Acoplamiento Molecular , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico , Estructura Terciaria de Proteína , Piridinas/farmacocinética , Piridinas/uso terapéutico , Ratas , Estereoisomerismo , Relación Estructura-ActividadRESUMEN
A cyclisation within a 4',5-bisthiazole (S)-proline-amide-urea series of selective PI3Kα inhibitors led to a novel 4,5-dihydrobenzo[1,2-d:3,4-d]bisthiazole tricyclic sub-series. The synthesis and optimisation of this 4,5-dihydrobenzo[1,2-d:3,4-d]bisthiazole sub-series and the expansion to a related tricyclic 4,5-dihydrothiazolo[4,5-h]quinazoline sub-series are described. From this work analogues including 11, 12, 19 and 23 were identified as potent and selective PI3Kα inhibitor in vivo tool compounds.
Asunto(s)
Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/química , Quinazolinas/farmacología , Tiazoles/química , Tiazoles/farmacología , Animales , Células CACO-2 , Fosfatidilinositol 3-Quinasa Clase I , Femenino , Humanos , Ratones Desnudos , Modelos Moleculares , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinazolinas/farmacocinética , Quinazolinas/uso terapéutico , Relación Estructura-Actividad , Tiazoles/farmacocinética , Tiazoles/uso terapéuticoRESUMEN
The ARID1A and ARID1B subunits are mutually exclusive components of the BAF variant of SWI/SNF chromatin remodeling complexes. Loss of function mutations in ARID1A are frequently observed in various cancers, resulting in a dependency on the paralog ARID1B for cancer cell proliferation. However, ARID1B has never been targeted directly, and the high degree of sequence similarity to ARID1A poses a challenge for the development of selective binders. In this study, we used mRNA display to identify peptidic ligands that bind with nanomolar affinities to ARID1B and showed high selectivity over ARID1A. Using orthogonal biochemical, biophysical, and chemical biology tools, we demonstrate that the peptides engage two different binding pockets, one of which directly involves an ARID1B-exclusive cysteine that could allow covalent targeting by small molecules. Our findings impart the first evidence of the ligandability of ARID1B, provide valuable tools for drug discovery, and suggest opportunities for the development of selective molecules to exploit the synthetic lethal relationship between ARID1A and ARID1B in cancer.
Asunto(s)
Proteínas de Unión al ADN , Péptidos , ARN Mensajero , Factores de Transcripción , Humanos , Ligandos , Péptidos/química , Péptidos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Unión Proteica , Sitios de UniónRESUMEN
The COVID-19 pandemic highlights the ongoing risk of zoonotic transmission of coronaviruses to global health. To prepare for future pandemics, it is essential to develop effective antivirals targeting a broad range of coronaviruses. Targeting the essential and clinically validated coronavirus main protease (Mpro), we constructed a structurally diverse Mpro panel by clustering all known coronavirus sequences by Mpro active site sequence similarity. Through screening, we identified a potent covalent inhibitor that engaged the catalytic cysteine of SARS-CoV-2 Mpro and used structure-based medicinal chemistry to develop compounds in the pyrazolopyrimidine sulfone series that exhibit submicromolar activity against multiple Mpro homologues. Additionally, we solved the first X-ray cocrystal structure of Mpro from the human-infecting OC43 coronavirus, providing insights into potency differences among compound-target pairs. Overall, the chemical compounds described in this study serve as starting points for the development of antivirals with broad-spectrum activity, enhancing our preparedness for emerging human-infecting coronaviruses.
Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , SARS-CoV-2 , Humanos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Antivirales/farmacología , Antivirales/química , Cristalografía por Rayos X , Tratamiento Farmacológico de COVID-19 , Relación Estructura-Actividad , COVID-19/virología , COVID-19/epidemiología , Inhibidores de Proteasa de Coronavirus/farmacología , Inhibidores de Proteasa de Coronavirus/química , Coronavirus Humano OC43/efectos de los fármacos , Dominio Catalítico , Modelos Moleculares , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Pandemias , Preparación para una PandemiaRESUMEN
Diarrhoeal disease caused by Cryptosporidium is a major cause of morbidity and mortality in young and malnourished children from low- and middle-income countries, with no vaccine or effective treatment. Here we describe the discovery of EDI048, a Cryptosporidium PI(4)K inhibitor, designed to be active at the infection site in the gastrointestinal tract and undergo rapid metabolism in the liver. By using mutational analysis and crystal structure, we show that EDI048 binds to highly conserved amino acid residues in the ATP-binding site. EDI048 is orally efficacious in an immunocompromised mouse model despite negligible circulating concentrations, thus demonstrating that gastrointestinal exposure is necessary and sufficient for efficacy. In neonatal calves, a clinical model of cryptosporidiosis, EDI048 treatment resulted in rapid resolution of diarrhoea and significant reduction in faecal oocyst shedding. Safety and pharmacological studies demonstrated predictable metabolism and low systemic exposure of EDI048, providing a substantial safety margin required for a paediatric indication. EDI048 is a promising clinical candidate for the treatment of life-threatening paediatric cryptosporidiosis.
Asunto(s)
Criptosporidiosis , Cryptosporidium , Criptosporidiosis/tratamiento farmacológico , Criptosporidiosis/parasitología , Animales , Ratones , Cryptosporidium/efectos de los fármacos , Cryptosporidium/genética , Humanos , Bovinos , Modelos Animales de Enfermedad , 1-Fosfatidilinositol 4-Quinasa/antagonistas & inhibidores , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Diarrea/tratamiento farmacológico , Diarrea/parasitología , Antiprotozoarios/farmacología , Antiprotozoarios/administración & dosificación , Antiprotozoarios/química , Antiprotozoarios/uso terapéuticoRESUMEN
Phosphatidylinositol-3-kinase α (PI3Kα) is a therapeutic target of high interest in anticancer drug research. On the basis of a binding model rationalizing the high selectivity and potency of a particular series of 2-aminothiazole compounds in inhibiting PI3Kα, a medicinal chemistry program has led to the discovery of the clinical candidate NVP-BYL719.
Asunto(s)
Descubrimiento de Drogas , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Tiazoles/farmacología , Animales , Disponibilidad Biológica , Línea Celular , Perros , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Ratones , Modelos Moleculares , Estructura Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/químicaRESUMEN
PI3 kinases are a family of lipid kinases mediating numerous cell processes such as proliferation, migration and differentiation. The PI3 Kinase pathway is often de-regulated in cancer through PI3Kα overexpression, gene amplification, mutations and PTEN phosphatase deletion. PI3K inhibitors represent therefore an attractive therapeutic modality for cancer treatment. Herein we describe how the potency of a benzothiazole fragment hit was quickly improved based on structural information and how this early chemotype was further optimized through scaffold hopping. This effort led to the identification of a series of 2-acetamido-5-heteroaryl imidazopyridines showing potent in vitro activity against all class I PI3Ks and attractive pharmacokinetic properties.
Asunto(s)
Compuestos Azo/síntesis química , Inhibidores de las Quinasa Fosfoinosítidos-3 , Piridinas/síntesis química , Piridinas/farmacología , Compuestos Azo/química , Compuestos Azo/farmacología , Benzotiazoles/química , Benzotiazoles/farmacología , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Imidas/síntesis química , Imidas/química , Imidas/farmacología , Concentración 50 Inhibidora , Modelos Moleculares , Piridinas/química , Solubilidad , Relación Estructura-ActividadRESUMEN
With the spread of SARS-CoV-2 throughout the globe causing the COVID-19 pandemic, the threat of zoonotic transmissions of coronaviruses (CoV) has become even more evident. As human infections have been caused by alpha- and beta-CoVs, structural characterization and inhibitor design mostly focused on these two genera. However, viruses from the delta and gamma genera also infect mammals and pose a potential zoonotic transmission threat. Here, we determined the inhibitor-bound crystal structures of the main protease (Mpro) from the delta-CoV porcine HKU15 and gamma-CoV SW1 from the beluga whale. A comparison with the apo structure of SW1 Mpro, which is also presented here, enabled the identification of structural arrangements upon inhibitor binding at the active site. The cocrystal structures reveal binding modes and interactions of two covalent inhibitors, PF-00835231 (active form of lufotrelvir) bound to HKU15, and GC376 bound to SW1 Mpro. These structures may be leveraged to target diverse coronaviruses and toward the structure-based design of pan-CoV inhibitors.
Asunto(s)
COVID-19 , Animales , Humanos , Porcinos , SARS-CoV-2/metabolismo , Pandemias , Antivirales/farmacología , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/química , MamíferosRESUMEN
The allosteric inhibitor of the mechanistic target of rapamycin (mTOR) everolimus reduces seizures in tuberous sclerosis complex (TSC) patients through partial inhibition of mTOR functions. Due to its limited brain permeability, we sought to develop a catalytic mTOR inhibitor optimized for central nervous system (CNS) indications. We recently reported an mTOR inhibitor (1) that is able to block mTOR functions in the mouse brain and extend the survival of mice with neuronal-specific ablation of the Tsc1 gene. However, 1 showed the risk of genotoxicity in vitro. Through structure-activity relationship (SAR) optimization, we identified compounds 9 and 11 without genotoxicity risk. In neuronal cell-based models of mTOR hyperactivity, both corrected aberrant mTOR activity and significantly improved the survival rate of mice in the Tsc1 gene knockout model. Unfortunately, 9 and 11 showed limited oral exposures in higher species and dose-limiting toxicities in cynomolgus macaque, respectively. However, they remain optimal tools to explore mTOR hyperactivity in CNS disease models.
Asunto(s)
Inhibidores mTOR , Sirolimus , Ratones , Animales , Síndrome , Sistema Nervioso Central/metabolismo , Encéfalo/metabolismo , Serina-Treonina Quinasas TOR , Adenosina TrifosfatoRESUMEN
Coronaviruses can evolve and spread rapidly to cause severe disease morbidity and mortality, as exemplified by SARS-CoV-2 variants of the COVID-19 pandemic. Although currently available vaccines remain mostly effective against SARS-CoV-2 variants, additional treatment strategies are needed. Inhibitors that target essential viral enzymes, such as proteases and polymerases, represent key classes of antivirals. However, clinical use of antiviral therapies inevitably leads to emergence of drug resistance. In this study we implemented a strategy to pre-emptively address drug resistance to protease inhibitors targeting the main protease (Mpro) of SARS-CoV-2, an essential enzyme that promotes viral maturation. We solved nine high-resolution cocrystal structures of SARS-CoV-2 Mpro bound to substrate peptides and six structures with cleavage products. These structures enabled us to define the substrate envelope of Mpro, map the critical recognition elements, and identify evolutionarily vulnerable sites that may be susceptible to resistance mutations that would compromise binding of the newly developed Mpro inhibitors. Our results suggest strategies for developing robust inhibitors against SARS-CoV-2 that will retain longer-lasting efficacy against this evolving viral pathogen.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/química , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/metabolismo , Resistencia a Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Pandemias , Péptido Hidrolasas , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales/químicaRESUMEN
Balanced pan-class I phosphoinositide 3-kinase inhibition as an approach to cancer treatment offers the prospect of treating a broad range of tumor types and/or a way to achieve greater efficacy with a single inhibitor. Taking buparlisib as the starting point, the balanced pan-class I PI3K inhibitor 40 (NVP-CLR457) was identified with what was considered to be a best-in-class profile. Key to the optimization to achieve this profile was eliminating a microtubule stabilizing off-target activity, balancing the pan-class I PI3K inhibition profile, minimizing CNS penetration, and developing an amorphous solid dispersion formulation. A rationale for the poor tolerability profile of 40 in a clinical study is discussed.
Asunto(s)
Antineoplásicos , Fosfatidilinositol 3-Quinasas , Aminopiridinas/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Compuestos Orgánicos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéuticoRESUMEN
BACKGROUND: Intensive care (ICU) patients' burn pain is difficult to assess, communicate and address, risking chronic pain syndromes and psychological morbidity. AIMS: To understand how the introduction of validated pain tools (Critical Care Pain Observation Tool [CPOT], Numerical Rating Scale [NRS], Pain Assessment in Advanced Dementia [PAINAD]) affected clinical judgement processes, analgesia/sedation administration and the experience of burn-injured patients. METHODS: Consecutive chart review compared type and amount of analgesia/sedation administered, ventilation time and length of ICU/hospital stay between consecutive burn patients pre- and 6-months post-intervention (n=70). Analysis of 36 qualitative interviews with ICU clinicians (n=12) and burn-injured adults (n=12) pre- and post-intervention was guided by Tanner's (2006) Clinical Judgement Model. RESULTS: Overall, there was a significant increase in morphine (P=0.04) and propofol (P=0.04) use and a trend towards increased paracetamol (P=0.06) use post-intervention. There was a trend towards greater Midazolam use for TBSA<20% (P=0.06), and significantly increased propofol use for TBSA≥20% (P=0.03). Ventilation time and ICU/hospital length of stay were unchanged. Qualitative analysis revealed complex clinical judgement dependent on the context of the patient's situation, unit culture, background beliefs of clinicians and in knowing the patient. Whilst the CPOT and NRS enhanced analytic reasoning and pain advocacy, the PAINAD appeared redundant. CONCLUSIONS: Effective pain assessment, management and advocacy are assisted by evidence-based assessment practices.
Asunto(s)
Quemaduras/complicaciones , Razonamiento Clínico , Dimensión del Dolor/normas , Adulto , Quemaduras/tratamiento farmacológico , Quemaduras/psicología , Femenino , Humanos , Unidades de Cuidados Intensivos/organización & administración , Unidades de Cuidados Intensivos/estadística & datos numéricos , Entrevistas como Asunto/métodos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Nueva Gales del Sur , Dimensión del Dolor/métodos , Dimensión del Dolor/estadística & datos numéricos , Investigación Cualitativa , Estadísticas no ParamétricasRESUMEN
PI3 Kinases are a family of lipid kinases mediating numerous cell processes such as proliferation, migration, and differentiation. The PI3 kinase pathway is often de-regulated in cancer through PI3Kα overexpression, gene amplification, mutations, and PTEN phosphatase deletion. PI3K inhibitors represent therefore an attractive therapeutic modality for cancer treatment. Herein we describe a novel series of PI3K inhibitors sharing a pyrimidine core and showing significant potency against class I PI3 kinases in the biochemical assay and in cells. The discovery, synthesis and SAR of this chemotype are described.