Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Chem Soc Rev ; 45(7): 1865-78, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26463830

RESUMEN

Vibrational spectroscopy, both infrared absorption and Raman spectroscopy, have attracted increasing attention for biomedical applications, from in vivo and ex vivo disease diagnostics and screening, to in vitro screening of therapeutics. There remain, however, many challenges related to the accuracy of analysis of physically and chemically inhomogeneous samples, across heterogeneous sample sets. Data preprocessing is required to deal with variations in instrumental responses and intrinsic spectral backgrounds and distortions in order to extract reliable spectral data. Data postprocessing is required to extract the most reliable information from the sample sets, based on often very subtle changes in spectra associated with the targeted pathology or biochemical process. This review presents the current understanding of the factors influencing the quality of spectra recorded and the pre-processing steps commonly employed to improve on spectral quality. It further explores some of the most common techniques which have emerged for classification and analysis of the spectral data for biomedical applications. The importance of sample presentation and measurement conditions to yield the highest quality spectra in the first place is emphasised, as is the potential of model simulated datasets to validate both pre- and post-processing protocols.


Asunto(s)
Células/patología , Espectrofotometría Infrarroja/métodos , Espectrometría Raman/métodos , Investigación Biomédica , Humanos
2.
Analyst ; 137(8): 1807-14, 2012 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-22382127

RESUMEN

Fibrinogen assays are commonly used as part of clinical screening tests to investigate haemorrhagic states, for detection of disseminated intravascular coagulation and as a predictor of a variety of cardiovascular events. The Clauss assay, which measures thrombin clotting time, is the most commonly used method for measuring fibrinogen levels. Nevertheless, inconsistencies are present in inter-manufacturer reagent sources, calibration standards and methodologies. Automated coagulation analysers, which measure changes in optical density during the prothrombin time (PT-Fg), have found use in many hospitals. However, the PT-Fg method is found to give falsely elevated values due to varying choices of calibrants, reagents and analysers. As an alternative, Raman spectroscopy has previously been applied to the analysis of blood and its various constituents to determine various analyte concentrations such as glucose, urea, triglycerides and cholesterol. In this study, Raman spectroscopy was investigated for its ability to accurately quantify fibrinogen concentration in blood plasma. Samples collected from 34 patients were analysed by Raman spectroscopy and the resultant spectra were fitted with a Partial Least Squares Regression model using target values obtained through a pre-calibrated Clauss fibrinogen assay. Various spectral pre-processing methods were utilised to prepare data to be entered into a calibration model. A root mean square error of prediction of 0.72 ± 0.05 g/L was achieved with as few as 25 spectra. In this pilot study, Raman spectroscopy has been demonstrated to be a robust technique providing rapid and reagent-free quantification of fibrinogen levels in blood plasma and a potential alternative to the Clauss assay.


Asunto(s)
Fibrinógeno/análisis , Plasma , Espectrometría Raman/métodos , Calibración , Humanos , Indicadores y Reactivos , Análisis de Regresión , Espectroscopía Infrarroja por Transformada de Fourier
3.
Int J Pharm ; 597: 120336, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33545280

RESUMEN

Oral dosage forms are by far the most common prescription and over-the-counter pharmaceutical dosage forms used worldwide. However, many patients suffer from adverse effects caused by their use of "one-size fits all" mass produced commercially available solid dosage forms, whereby they do not receive dedicated medication or dosage adjusted to their specific needs. The development of 3D printing paves the way for personalised medicine. This work focuses on personalised therapies for hypertensive patients using nifedipine as the model drug. 3D printed full solid and channelled spherical mini-tablets with enhanced surface area (1.6-fold higher) were printed using modified PVA commercial filaments loaded by passive diffusion (PD), and Kollidon VA64 (KVA) and ethylcellulose (EC) based filaments prepared by hot-melt extrusion (HME). Drug loading ranged from 3.7% to 60% based on the employed technique, with a 13-fold higher drug loading achieved with the HME compared to PD. Composition was found to have a more significant impact on drug dissolution than geometry and surface area. Both KVA and EC-based formulations exhibited a biphasic zero-order drug-release profile. Physicochemical characterization revealed that nifedipine was in the amorphous form in the KVA-based end-products which led to a greater dissolution control over a 24 h period compared to the EC-based formulations that exhibited low levels of crystallinity by PXRD. The proposed 3D printed spherical mini-tablets provide a versatile technology for personalised solid dosage forms with high drug loading and dissolution control, easily adaptable to patient and disease needs.


Asunto(s)
Excipientes , Tecnología Farmacéutica , Liberación de Fármacos , Humanos , Impresión Tridimensional , Solubilidad , Comprimidos
4.
Analyst ; 135(12): 3070-6, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20931112

RESUMEN

The study of the interaction of anticancer drugs with mammalian cells in vitro is important to elucidate the mechanisms of action of the drug on its biological targets. In this context, Raman spectroscopy is a potential candidate for high throughput, non-invasive analysis. To explore this potential, the interaction of cis-diamminedichloroplatinum(II) (cisplatin) with a human lung adenocarcinoma cell line (A549) was investigated using Raman microspectroscopy. The results were correlated with parallel measurements from the MTT cytotoxicity assay, which yielded an IC(50) value of 1.2 ± 0.2 µM. To further confirm the spectral results, Raman spectra were also acquired from DNA extracted from A549 cells exposed to cisplatin and from unexposed controls. Partial least squares (PLS) multivariate regression and PLS Jackknifing were employed to highlight spectral regions which varied in a statistically significant manner with exposure to cisplatin and with the resultant changes in cellular physiology measured by the MTT assay. The results demonstrate the potential of the cellular Raman spectrum to non-invasively elucidate spectral changes that have their origin either in the biochemical interaction of external agents with the cell or its physiological response, allowing the prediction of the cellular response and the identification of the origin of the chemotherapeutic response at a molecular level in the cell.


Asunto(s)
Adenocarcinoma/química , Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Cisplatino/uso terapéutico , Neoplasias Pulmonares/química , Neoplasias Pulmonares/tratamiento farmacológico , Espectrometría Raman/métodos , Adenocarcinoma/patología , Antineoplásicos/química , Antineoplásicos/farmacología , Bioensayo/métodos , Línea Celular Tumoral , Núcleo Celular/química , Núcleo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/química , Cisplatino/farmacología , Humanos , Neoplasias Pulmonares/patología , Valor Predictivo de las Pruebas , Resultado del Tratamiento
5.
Pharmaceutics ; 12(4)2020 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-32290400

RESUMEN

Although not readily accessible yet to many community and hospital pharmacists, fuse deposition modelling (FDM) is a 3D printing technique that can be used to create a 3D pharmaceutical dosage form by employing drug loaded filaments extruded via a nozzle, melted and deposited layer by layer. FDM requires printable filaments, which are commonly manufactured by hot melt extrusion, and identifying a suitable extrudable drug-excipient mixture can sometimes be challenging. We propose here the use of passive diffusion as an accessible loading method for filaments that can be printed using FDM technology to allow for the fabrication of oral personalised medicines in clinical settings. Utilising Hansen Solubility Parameters (HSP) and the concept of HSP distances (Ra) between drug, solvent, and filament, we have developed a facile pre-screening tool for the selection of the optimal combination that can provide a high drug loading (a high solvent-drug Ra, >10, and an intermediate solvent-filament Ra value, ~10). We have identified that other parameters such as surface roughness and stiffness also play a key role in enhancing passive diffusion of the drug into the filaments. A predictive model for drug loading was developed based on Support Vector Machine (SVM) regression and indicated a strong correlation between both Ra and filament stiffness and the diffusion capacity of a model BCS Class II drug, nifedipine (NFD), into the filaments. A drug loading, close to 3% w/w, was achieved. 3D printed tablets prepared using a PVA-derived filament (Hydrosupport, 3D Fuel) showed promising characteristics in terms of dissolution (with a sustained release over 24 h) and predicted chemical stability (>3 years at 25 °C/60% relative humidity), similar to commercially available NFD oral dosage forms. We believe FDM coupled with passive diffusion could be implemented easily in clinical settings for the manufacture of tailored personalised medicines, which can be stored over long periods of time (similar to industrially manufactured solid dosage forms).

6.
Analyst ; 134(6): 1182-91, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19475146

RESUMEN

In this study the suitability of Raman spectroscopy for the determination of carbon nanotube mediated toxicity on human alveolar carcinoma epithelial cells (A549) is explored. The exposure of this cell line represents the primary pathway of exposure in humans, that of inhalation. Peak ratio analysis demonstrates a dose-dependent response which correlates to previous toxicological studies. Principal component analysis is employed to further classify cellular response as a function of dose and to examine differences between spectra as a function of exposed concentration. To further illustrate the potential of Raman spectroscopy in this field, Partial Least Squares (PLS) regression and genetic algorithm feature selection have been utilised to demonstrate that clonogenic endpoints, and therefore toxic response, can be potentially predicted from spectra of cells exposed to un-determined doses, removing the need for costly and time consuming biochemical assays. This preliminary study demonstrates the potential of Raman spectroscopy as a probe of cytotoxicity to nanoparticle exposure.


Asunto(s)
Nanotubos de Carbono/toxicidad , Espectrometría Raman , Algoritmos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Inhalación , Análisis de los Mínimos Cuadrados , Análisis Multivariante , Análisis de Componente Principal , Factores de Tiempo
7.
Anal Bioanal Chem ; 387(5): 1717-28, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17102969

RESUMEN

Non-invasive measurements of cellular function in in vitro cultured cell lines using vibrational spectroscopy require the use of spectroscopic substrates such as quartz, ZnSe and MirrIR etc. These substrates are generally dissimilar to the original in vivo extracellular environment of a given cell line and are often tolerated poorly by cultured cell lines resulting in morphological and functional changes in the cell. The present study demonstrates various correlations between vibrational spectroscopic analyses and biochemical analyses in the evaluation of the interaction of a normal human epithelial keratinocyte cell line (HaCaT) with MirrIR and quartz substrates coated with fibronectin, laminin and gelatin. The findings of this study suggest that there is a correlation between quantitative measurements of cellular proliferative capacity and viability and peak area ratios in FTIR spectra, with replicated differences in similar areas of the observed Raman spectra. Differences in the physiology of cells were observed between the two spectroscopic substrates coated in fibronectin and laminin, but little differences were observed when the cells were attached to gelatin-coated quartz and MirrIR slides. The correlations demonstrate the sensitivity of the spectroscopic techniques to evaluate the physiology of the system. Furthermore the study suggests that gelatin is a suitable coating for use in spectroscopic measurements of cellular function in human keratinocytes, as it provides a material that normalises the effect of substrate attachment on cellular physiology. This effect is likely to be cell-line dependent, and it is recommended that similar evaluations of this effect are performed for those combinations of spectroscopic substrate and cell lines that are to be used in individual experiments.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/administración & dosificación , Queratinocitos/efectos de los fármacos , Queratinocitos/fisiología , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectrometría Raman/métodos , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA