Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ecol ; 23(5): 1153-66, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24433175

RESUMEN

Global climate changes during the Cenozoic (65.5-0 Ma) caused major biological range shifts and extinctions. In northern Europe, for example, a pattern of few endemics and the dominance of wide-ranging species is thought to have been determined by the Pleistocene (2.59-0.01 Ma) glaciations. This study, in contrast, reveals an ancient subsurface fauna endemic to Britain and Ireland. Using a Bayesian phylogenetic approach, we found that two species of stygobitic invertebrates (genus Niphargus) have not only survived the entire Pleistocene in refugia but have persisted for at least 19.5 million years. Other Niphargus species form distinct cryptic taxa that diverged from their nearest continental relative between 5.6 and 1.0 Ma. The study also reveals an unusual biogeographical pattern in the Niphargus genus. It originated in north-west Europe approximately 87 Ma and underwent a gradual range expansion. Phylogenetic diversity and species age are highest in north-west Europe, suggesting resilience to extreme climate change and strongly contrasting the patterns seen in surface fauna. However, species diversity is highest in south-east Europe, indicating that once the genus spread to these areas (approximately 25 Ma), geomorphological and climatic conditions enabled much higher diversification. Our study highlights that groundwater ecosystems provide an important contribution to biodiversity and offers insight into the interactions between biological and climatic processes.


Asunto(s)
Anfípodos/clasificación , Evolución Biológica , Cambio Climático , Filogenia , Anfípodos/genética , Animales , Teorema de Bayes , Ecosistema , Europa (Continente) , Geografía , Agua Subterránea , Irlanda , Datos de Secuencia Molecular , Reino Unido
2.
Mol Ecol Resour ; 24(1): e13882, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37864541

RESUMEN

Transition to novel environments, such as groundwater colonization by surface organisms, provides an excellent research ground to study phenotypic evolution. However, interspecific comparative studies on evolution to groundwater life are few because of the challenge in assembling large ecological and molecular resources for species-rich taxa comprised of surface and subterranean species. Here, we make available to the scientific community an operational set of working tools and resources for the Asellidae, a family of freshwater isopods containing hundreds of surface and subterranean species. First, we release the World Asellidae database (WAD) and its web application, a sustainable and FAIR solution to producing and sharing data and biological material. WAD provides access to thousands of species occurrences, specimens, DNA extracts and DNA sequences with rich metadata ensuring full scientific traceability. Second, we perform a large-scale dated phylogenetic reconstruction of Asellidae to support phylogenetic comparative analyses. Of 424 terminal branches, we identify 34 pairs of surface and subterranean species representing independent replicates of the transition from surface water to groundwater. Third, we exemplify the usefulness of WAD for documenting phenotypic shifts associated with colonization of subterranean habitats. We provide the first phylogenetically controlled evidence that body size of males decreases relative to that of females upon groundwater colonization, suggesting competition for rare receptive females selects for smaller, more agile males in groundwater. By making these tools and resources widely accessible, we open up new opportunities for exploring how phenotypic traits evolve in response to changes in selective pressures and trade-offs during groundwater colonization.


Asunto(s)
Isópodos , Animales , Filogenia , Isópodos/genética , Ecosistema , ADN , Secuencia de Bases
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA