Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mov Disord ; 38(9): 1655-1667, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37347552

RESUMEN

BACKGROUND: Motor and cognitive impairment in Parkinson's disease (PD) is associated with dopaminergic dysfunction that stems from substantia nigra (SN) degeneration and concomitant α-synuclein accumulation. Diffusion magnetic resonance imaging (MRI) can detect microstructural alterations of the SN and its tracts to (sub)cortical regions, but their pathological sensitivity is still poorly understood. OBJECTIVE: To unravel the pathological substrate(s) underlying microstructural alterations of SN, and its tracts to the dorsal striatum and dorsolateral prefrontal cortex (DLPFC) in PD. METHODS: Combining post-mortem in situ MRI and histopathology, T1-weighted and diffusion MRI, and neuropathological samples of nine PD, six PD with dementia (PDD), five dementia with Lewy bodies (DLB), and 10 control donors were collected. From diffusion MRI, mean diffusivity (MD) and fractional anisotropy (FA) were derived from the SN, and tracts between the SN and caudate nucleus, putamen, and DLPFC. Phosphorylated-Ser129-α-synuclein and tyrosine hydroxylase immunohistochemistry was included to quantify nigral Lewy pathology and dopaminergic degeneration, respectively. RESULTS: Compared to controls, PD and PDD/DLB showed increased MD of the SN and SN-DLPFC tract, as well as increased FA of the SN-caudate nucleus tract. Both PD and PDD/DLB showed nigral Lewy pathology and dopaminergic loss compared to controls. Increased MD of the SN and FA of SN-caudate nucleus tract were associated with SN dopaminergic loss. Whereas increased MD of the SN-DLPFC tract was associated with increased SN Lewy neurite load. CONCLUSIONS: In PD and PDD/DLB, diffusion MRI captures microstructural alterations of the SN and tracts to the dorsal striatum and DLPFC, which differentially associates with SN dopaminergic degeneration and Lewy neurite pathology. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , alfa-Sinucleína/metabolismo , Sustancia Negra/metabolismo , Cuerpo Estriado/metabolismo , Putamen/metabolismo , Dopamina , Enfermedad por Cuerpos de Lewy/patología
2.
Acta Neuropathol ; 141(6): 881-899, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33779783

RESUMEN

Meningeal inflammation strongly associates with demyelination and neuronal loss in the underlying cortex of progressive MS patients, thereby contributing significantly to clinical disability. However, the pathological mechanisms of meningeal inflammation-induced cortical pathology are still largely elusive. By extensive analysis of cortical microglia in post-mortem progressive MS tissue, we identified cortical areas with two MS-specific microglial populations, termed MS1 and MS2 cortex. The microglial population in MS1 cortex was characterized by a higher density and increased expression of the activation markers HLA class II and CD68, whereas microglia in MS2 cortex showed increased morphological complexity and loss of P2Y12 and TMEM119 expression. Interestingly, both populations associated with inflammation of the overlying meninges and were time-dependently replicated in an in vivo rat model for progressive MS-like chronic meningeal inflammation. In this recently developed animal model, cortical microglia at 1-month post-induction of experimental meningeal inflammation resembled microglia in MS1 cortex, and microglia at 2 months post-induction acquired a MS2-like phenotype. Furthermore, we observed that MS1 microglia in both MS cortex and the animal model were found closely apposing neuronal cell bodies and to mediate pre-synaptic displacement and phagocytosis, which coincided with a relative sparing of neurons. In contrast, microglia in MS2 cortex were not involved in these synaptic alterations, but instead associated with substantial neuronal loss. Taken together, our results show that in response to meningeal inflammation, microglia acquire two distinct phenotypes that differentially associate with neurodegeneration in the progressive MS cortex. Furthermore, our in vivo data suggests that microglia initially protect neurons from meningeal inflammation-induced cell death by removing pre-synapses from the neuronal soma, but eventually lose these protective properties contributing to neuronal loss.


Asunto(s)
Corteza Cerebral/patología , Meninges/patología , Microglía/patología , Esclerosis Múltiple/patología , Enfermedades Neurodegenerativas/patología , Enfermedades Neuroinflamatorias/patología , Neuronas/patología , Adulto , Anciano , Animales , Muerte Celular , Enfermedades Desmielinizantes/inmunología , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Meninges/inmunología , Microglía/clasificación , Microglía/inmunología , Microglía/metabolismo , Persona de Mediana Edad , Esclerosis Múltiple/inmunología , Enfermedades Neurodegenerativas/inmunología , Fenotipo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA