RESUMEN
The plastids of algae and plants originated on a single occasion from an endosymbiotic cyanobacterium at least a billion years ago. Despite the divergent evolution that characterizes the plastids of different lineages, many traits such as membrane organization and means of fission are universal-they pay tribute to the cyanobacterial origin of the organelle. For one such trait, the peptidoglycan (PG) layer, the situation is more complicated. Our view on its distribution keeps on changing and little is known regarding its molecular relevance, especially for land plants. Here, we investigate the extent of PG presence across the Chloroplastida using a phylogenomic approach. Our data support the view of a PG layer being present in the last common ancestor of land plants and its remarkable conservation across bryophytes that are otherwise characterized by gene loss. In embryophytes, the occurrence of the PG layer biosynthetic toolkit becomes patchier and the availability of novel genome data questions previous predictions regarding a functional coevolution of the PG layer and the plastid division machinery-associated gene FtsZ3. Furthermore, our data confirm the presence of penicillin-binding protein (PBP) orthologs in seed plants, which were previously thought to be absent from this clade. The 5-7 nm thick, and seemingly unchanged, PG layer armoring the plastids of glaucophyte algae might still provide the original function of structural support, but the same can likely not be said about the only recently identified PG layer of bryophyte and tracheophyte plastids. There are several issues to be explored regarding the composition, exact function, and biosynthesis of the PG layer in land plants. These issues arise from the fact that land plants seemingly lack certain genes that are believed to be crucial for PG layer production, even though they probably synthesize a PG layer.
Asunto(s)
Embryophyta , Peptidoglicano , Peptidoglicano/metabolismo , Plantas/metabolismo , Plastidios/metabolismo , Embryophyta/metabolismo , Filogenia , Evolución MolecularRESUMEN
Prokaryotic genomes constantly undergo gene flux via lateral gene transfer, generating a pangenome structure consisting of a conserved core genome surrounded by a more variable accessory genome shell. Over time, flux generates change in genome content. Here, we measure and compare the rate of genome flux for 5655 prokaryotic genomes as a function of amino acid sequence divergence in 36 universally distributed proteins of the informational core (IC). We find a clock of gene content change. The long-term average rate of gene content flux is remarkably constant across all higher prokaryotic taxa sampled, whereby the size of the accessory genome-the proportion of the genome harboring gene content difference for genome pairs-varies across taxa. The proportion of species-level accessory genes per genome, varies from 0% (Chlamydia) to 30%-33% (Alphaproteobacteria, Gammaproteobacteria, and Clostridia). A clock-like rate of gene content change across all prokaryotic taxa sampled suggest that pangenome structure is a general feature of prokaryotic genomes and that it has been in existence since the divergence of bacteria and archaea.
Asunto(s)
Archaea , Bacterias , Evolución Molecular , Genoma Arqueal , Genoma Bacteriano , Bacterias/genética , Bacterias/clasificación , Archaea/genética , Archaea/clasificación , Transferencia de Gen Horizontal , FilogeniaRESUMEN
Molecular oxygen is a stable diradical. All O2-dependent enzymes employ a radical mechanism. Generated by cyanobacteria, O2 started accumulating on Earth 2.4 billion years ago. Its evolutionary impact is traditionally sought in respiration and energy yield. We mapped 365 O2-dependent enzymatic reactions of prokaryotes to phylogenies for the corresponding 792 protein families. The main physiological adaptations imparted by O2-dependent enzymes were not energy conservation, but novel organic substrate oxidations and O2-dependent, hence O2-tolerant, alternative pathways for O2-inhibited reactions. Oxygen-dependent enzymes evolved in ancestrally anaerobic pathways for essential cofactor biosynthesis including NAD+, pyridoxal, thiamine, ubiquinone, cobalamin, heme, and chlorophyll. These innovations allowed prokaryotes to synthesize essential cofactors in O2-containing environments, a prerequisite for the later emergence of aerobic respiratory chains.
Asunto(s)
Oxígeno , Oxígeno/metabolismo , Aerobiosis , Filogenia , Células Procariotas/metabolismo , Evolución Molecular , Oxidación-Reducción , Enzimas/metabolismo , Enzimas/genéticaRESUMEN
The first plastid evolved from an endosymbiotic cyanobacterium in the common ancestor of the Archaeplastida. The transformative steps from cyanobacterium to organelle included the transfer of control over developmental processes, a necessity for the host to orchestrate, for example, the fission of the organelle. The plastids of almost all embryophytes divide independently from nuclear division, leading to cells housing multiple plastids. Hornworts, however, are monoplastidic (or near-monoplastidic), and their photosynthetic organelles are a curious exception among embryophytes for reasons such as the occasional presence of pyrenoids. In this study, we screened genomic and transcriptomic data of eleven hornworts for components of plastid developmental pathways. We found intriguing differences among hornworts and specifically highlight that pathway components involved in regulating plastid development and biogenesis were differentially lost in this group of bryophytes. Our results also confirmed that hornworts underwent significant instances of gene loss, underpinning that the gene content of this group is significantly lower than other bryophytes and tracheophytes. In combination with ancestral state reconstruction, our data suggest that hornworts have reverted back to a monoplastidic phenotype due to the combined loss of two plastid division-associated genes, namely, ARC3 and FtsZ2.
RESUMEN
Most mitochondrial proteins are synthesized as precursors that carry N-terminal presequences. After they are imported into mitochondria, these targeting signals are cleaved off by the mitochondrial processing peptidase (MPP). Using the mitochondrial tandem protein Arg5,6 as a model substrate, we demonstrate that MPP has an additional role in preprotein maturation, beyond the removal of presequences. Arg5,6 is synthesized as a polyprotein precursor that is imported into mitochondria and subsequently separated into two distinct enzymes. This internal processing is performed by MPP, which cleaves the Arg5,6 precursor at its N-terminus and at an internal site. The peculiar organization of Arg5,6 is conserved across fungi and reflects the polycistronic arginine operon in prokaryotes. MPP cleavage sites are also present in other mitochondrial fusion proteins from fungi, plants, and animals. Hence, besides its role as a "ticket canceller" for removal of presequences, MPP exhibits a second conserved activity as an internal processing peptidase for complex mitochondrial precursor proteins.