Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Pathol ; 194(2): 180-194, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38029923

RESUMEN

A minimal diffusion barrier is key to the pulmonary gas exchange. In alveolar capillary dysplasia (ACD), a rare genetically driven disease of early infancy, this crucial fibrovascular interface is compromised while the underlying pathophysiology is insufficiently understood. Recent in-depth analyses of vascular alterations in adult lung disease encouraged researchers to extend these studies to ACD and compare the changes of the microvasculature. Lung tissue samples of children with ACD (n = 12), adults with non-specific interstitial pneumonia (n = 12), and controls (n = 20) were studied using transmission electron microscopy, single-gene sequencing, immunostaining, exome sequencing, and broad transcriptome profiling. In ACD, pulmonary capillary basement membranes were hypertrophied, thickened, and multilamellated. Transcriptome profiling revealed increased CDH5, COL4A1, COL15A1, PTK2B, and FN1 and decreased VIT expression, confirmed by immunohistochemistry. In contrast, non-specific interstitial pneumonia samples showed a regular basement membrane architecture with preserved VIT expression but also increased COL15A1+ vessels. This study provides insight into the ultrastructure and pathophysiology of ACD. The lack of normally developed lung capillaries appeared to cause a replacement by COL15A1+ vessels, a mechanism recently described in interstitial lung disease. The VIT loss and FN1 overexpression might contribute to the unique appearance of basement membranes in ACD. Future studies are needed to explore the therapeutic potential of down-regulating the expression of FN1 and balancing VIT deficiency.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Síndrome de Circulación Fetal Persistente , Recién Nacido , Niño , Adulto , Humanos , Membrana Basal , Alveolos Pulmonares , Pulmón , Capilares
2.
Cell Mol Life Sci ; 81(1): 171, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597989

RESUMEN

Intercellular communication via gap junctions has a fundamental role in regulating cell growth and tissue homeostasis, and its dysregulation may be involved in cancer development and radio- and chemotherapy resistance. Connexin43 (Cx43) is the most ubiquitously expressed gap junction channel protein in human tissues. Emerging evidence indicates that dysregulation of the sorting of Cx43 to lysosomes is important in mediating the loss of Cx43-based gap junctions in cancer cells. However, the molecular basis underlying this process is currently poorly understood. Here, we identified the E3 ubiquitin ligase ITCH as a novel regulator of intercellular communication via gap junctions. We demonstrate that ITCH promotes loss of gap junctions in cervical cancer cells, which is associated with increased degradation of Cx43 in lysosomes. The data further indicate that ITCH interacts with and regulates Cx43 ubiquitination and that the ITCH-induced loss of Cx43-based gap junctions requires its catalytic HECT (homologous to E6-AP C-terminus) domain. The data also suggest that the ability of ITCH to efficiently promote loss of Cx43-based gap junctions and degradation of Cx43 depends on a functional PY (PPXY) motif in the C-terminal tail of Cx43. Together, these data provide new insights into the molecular basis underlying the degradation of Cx43 and have implications for the understanding of how intercellular communication via gap junctions is lost during cancer development.


Asunto(s)
Conexina 43 , Ubiquitina-Proteína Ligasas , Humanos , Comunicación Celular , Conexina 43/genética , Conexinas , Uniones Comunicantes , Lisosomas , Ubiquitina-Proteína Ligasas/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-38712433

RESUMEN

Quantitative characterization of lung structures by morphometric or stereologic analysis of histologic sections is a powerful means of elucidating pulmonary structure-function relations. The overwhelming majority of studies, however, fix lungs for histology at pressures outside the physiologic/pathophysiologic respiratory volume range. Thus valuable information is being lost. In this perspective article, we argue that investigators performing pulmonary histologic studies should consider whether the aims of their studies would benefit from fixation at functional transpulmonary pressures, particular those of end-inspiration and end-expiration. We survey the pressures at which lungs are typically fixed in preclinical structure-function studies; provide examples of conditions that would benefit from histologic evaluation at functional lung volumes; summarize available fixation methods; discuss alternative imaging modalities; and discuss challenges to implementing the suggested approach and means of addressing those challenges. We aim to persuade investigators that modifying or complementing the traditional histologic approach by fixing lungs at minimal and maximal functional volumes could enable new understanding of pulmonary structure-function relations.

4.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L19-L39, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38712429

RESUMEN

Mechanical ventilation can cause ventilation-induced lung injury (VILI). The concept of stress concentrations suggests that surfactant dysfunction-induced microatelectases might impose injurious stresses on adjacent, open alveoli and function as germinal centers for injury propagation. The aim of the present study was to quantify the histopathological pattern of VILI progression and to test the hypothesis that injury progresses at the interface between microatelectases and ventilated lung parenchyma during low-positive end-expiratory pressure (PEEP) ventilation. Bleomycin was used to induce lung injury with microatelectases in rats. Lungs were then mechanically ventilated for up to 6 h at PEEP = 1 cmH2O and compared with bleomycin-treated group ventilated protectively with PEEP = 5 cmH2O to minimize microatelectases. Lung mechanics were measured during ventilation. Afterward, lungs were fixed at end-inspiration or end-expiration for design-based stereology. Before VILI, bleomycin challenge reduced the number of open alveoli [N(alvair,par)] by 29%. No differences between end-inspiration and end-expiration were observed. Collapsed alveoli clustered in areas with a radius of up to 56 µm. After PEEP = 5 cmH2O ventilation for 6 h, N(alvair,par) remained stable while PEEP = 1 cmH2O ventilation led to an additional loss of aerated alveoli by 26%, mainly due to collapse, with a small fraction partly edema filled. Alveolar loss strongly correlated to worsening of tissue elastance, quasistatic compliance, and inspiratory capacity. The radius of areas of collapsed alveoli increased to 94 µm, suggesting growth of the microatelectases. These data provide evidence that alveoli become unstable in neighborhood of microatelectases, which most likely occurs due to stress concentration-induced local vascular leak and surfactant dysfunction.NEW & NOTEWORTHY Low-volume mechanical ventilation in the presence of high surface tension-induced microatelectases leads to the degradation of lung mechanical function via the progressive loss of alveoli. Microatelectases grow at the interfaces of collapsed and open alveoli. Here, stress concentrations might cause injury and alveolar instability. Accumulation of small amounts of alveolar edema can be found in a fraction of partly collapsed alveoli but, in this model, alveolar flooding is not a major driver for degradation of lung mechanics.


Asunto(s)
Respiración con Presión Positiva , Alveolos Pulmonares , Lesión Pulmonar Inducida por Ventilación Mecánica , Animales , Alveolos Pulmonares/patología , Alveolos Pulmonares/fisiopatología , Ratas , Masculino , Respiración con Presión Positiva/métodos , Respiración con Presión Positiva/efectos adversos , Lesión Pulmonar Inducida por Ventilación Mecánica/patología , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología , Bleomicina/toxicidad , Bleomicina/efectos adversos , Ratas Sprague-Dawley , Pulmón/patología , Pulmón/fisiopatología , Respiración Artificial/efectos adversos , Respiración Artificial/métodos , Mecánica Respiratoria , Atelectasia Pulmonar/patología , Atelectasia Pulmonar/fisiopatología
5.
Respir Res ; 25(1): 26, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200596

RESUMEN

BACKGROUND: Honeycomb cysts (HC) within the alveolar region are distinct histopathological features in the lungs of idiopathic pulmonary fibrosis (IPF) patients. HC are lined with a single-or stratified layer of basal cells (BC), or with a bronchiolar-like epithelium composed of basal-, ciliated- and secretory epithelial cells. By using cultured IPF patient-derived alveolar BC, we aimed to establish an in vitro- and in vivo model to mimic HC formation in IPF. We (1) optimized conditions to culture and propagate IPF patient-derived alveolar BC, (2) cultured the cells on an air liquid interface (ALI) or in a three dimensional (3D) organoid model, and (3) investigated the cells` behavior after instillation into bleomycin-challenged mice. METHODS: Alveolar BC were cultured from peripheral IPF lung tissue and grown on tissue-culture treated plastic, an ALI, or in a 3D organoid model. Furthermore, cells were instilled into bleomycin-challenged NRG mice. Samples were analyzed by TaqMan RT-PCR, immunoblotting, immunocytochemistry/immunofluorescence (ICC/IF), or immunohistochemistry (IHC)/IF. Mann-Whitney tests were performed using GraphPad Prism software. RESULTS: Cultured alveolar BC showed high expression of canonical basal cell markers (TP63, keratin (KRT)5, KRT14, KRT17), robust proliferation, and wound closure capacity. The cells could be cryopreserved and propagated for up to four passages without a significant loss of basal cell markers. When cultured on an ALI or in a 3D organoid model, alveolar BC differentiated to ciliated- and secretory epithelial cells. When instilled into bleomycin-challenged mice, human alveolar BC cells formed HC-like structures composed of human basal-, and secretory epithelial cells within the mouse parenchyma. CONCLUSION: IPF patient-derived alveolar BC on an ALI, in 3D organoids or after instillation into bleomycin-challenged mice form HC-like structures that closely resemble HC within the IPF lung. These models therefore represent powerful tools to study honeycomb formation, and its potential therapeutic inhibition in IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Humanos , Animales , Ratones , Fibrosis Pulmonar Idiopática/inducido químicamente , Células Epiteliales Alveolares , Células Epiteliales , Bleomicina/toxicidad , Epitelio
6.
J Immunol ; 208(5): 1259-1271, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35149532

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is an irreversible, age-related diffuse parenchymal lung disease of poorly defined etiology. Many patients with IPF demonstrate distinctive lymphocytic interstitial infiltrations within remodeled lung tissue with uncertain pathogenetic relevance. Histopathological examination of explant lung tissue of patients with IPF revealed accentuated lymphoplasmacellular accumulations in close vicinity to, or even infiltrating, remodeled lung tissue. Similarly, we found significant accumulations of B cells interfused with T cells within remodeled lung tissue in two murine models of adenoviral TGF-ß1 or bleomycin (BLM)-induced lung fibrosis. Such B cell accumulations coincided with significantly increased lung collagen deposition, lung histopathology, and worsened lung function in wild-type (WT) mice. Surprisingly, B cell-deficient µMT knockout mice exhibited similar lung tissue remodeling and worsened lung function upon either AdTGF-ß1 or BLM as for WT mice. Comparative transcriptomic profiling of sorted B cells collected from lungs of AdTGF-ß1- and BLM-exposed WT mice identified a large set of commonly regulated genes, but with significant enrichment observed for Gene Ontology terms apparently not related to lung fibrogenesis. Collectively, although we observed B cell accumulations in lungs of IPF patients as well as two experimental models of lung fibrosis, comparative profiling of characteristic features of lung fibrosis between WT and B cell-deficient mice did not support a major involvement of B cells in lung fibrogenesis in mice.


Asunto(s)
Linfocitos B/inmunología , Fibrosis Pulmonar Idiopática/inmunología , Fibrosis Pulmonar Idiopática/patología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Bleomicina/toxicidad , Colágeno/metabolismo , Femenino , Humanos , Fibrosis Pulmonar Idiopática/inducido químicamente , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tejido Parenquimatoso/patología , Linfocitos T/inmunología
7.
Vet Surg ; 53(1): 75-83, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37332128

RESUMEN

OBJECTIVE: To assess diagnostic value and clinical utility of multidetector computed tomographic positive contrast arthrography (CTA) for meniscal lesions in dogs. STUDY DESIGN: Prospective case series. STUDY POPULATION: Client-owned dogs (n = 55) with cranial cruciate ligament injuries. METHODS: Sedated dogs underwent CTA using a 16-slice scanner, and subsequently received mini-medial arthrotomy for meniscal assessment. Scans were anonymized, randomized, and reviewed twice for meniscal lesions by three independent observers with varying experience. Results were compared with surgical findings. Reproducibility and repeatability were assessed with kappa statistics, intraobserver changes in diagnosis by McNemar's test, and interobserver differences using Cochran's Q test. Test performance was calculated using sensitivity, specificity, proportion correctly identified, and positive and negative predictive values and likelihood ratios. RESULTS: Analysis was based on 52 scans from 44 dogs. Sensitivity for identifying meniscal lesions was 0.62-1.00 and specificity was 0.70-0.96. Intraobserver agreement was 0.50-0.78, and interobserver agreement was 0.47-0.83. There was a significant change between readings one and two for the least experienced observers (p < .05). The sum of sensitivity and specificity exceeded 1.5 for both readings and all observers. CONCLUSION: Diagnostic performance was suitable for identifying meniscal lesions. An effect of experience and learning was seen in this study.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Enfermedades de los Perros , Humanos , Perros , Animales , Artrografía/veterinaria , Artrografía/métodos , Rodilla de Cuadrúpedos/cirugía , Ligamento Cruzado Anterior/cirugía , Reproducibilidad de los Resultados , Meniscos Tibiales/cirugía , Medios de Contraste , Lesiones del Ligamento Cruzado Anterior/diagnóstico por imagen , Lesiones del Ligamento Cruzado Anterior/veterinaria , Sensibilidad y Especificidad , Artroscopía/veterinaria , Enfermedades de los Perros/diagnóstico por imagen
8.
Am J Physiol Lung Cell Mol Physiol ; 324(3): L358-L372, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36719077

RESUMEN

Mechanical forces affect the alveolar shape, depending on location and tissue composition, and vary during the respiratory cycle. This study performs alveolar morphomics in different lobes of human lungs using models generated from three-dimensional (3-D) micro-computed tomography (microCT) images. Cylindrical tissue samples (1.6 cm × 2 cm) were extracted from two nontransplantable donor lungs (one ex-smoker and one smoker, 3 samples per subject) that were air-inflated and frozen solid in liquid nitrogen vapor. Samples were scanned with microCT (11 µm/voxel). Within representative cubic regions of interest (5.5 mm edge length), alveoli were segmented to produce corresponding 3-D models from which quantitative data were obtained. The surface of segmented alveoli (n_alv_total = 23,587) was divided into individual planar surfaces (facets) and angles between facet normals were calculated. Moreover, the number of neighboring alveoli was estimated for every alveolus. In this study, we examined intraindividual differences in alveolar morphology, which were reproducible in the lungs of two subjects. The main aspects are higher mean alveolar volumes (v_alv: 6.64 × 106 and 6.63 × 106 µm3 vs. 5.78 × 106 and 6.29 × 106 µm3) and surface sizes (s_alv: 0.19 and 0.18 mm2 vs. 0.17 mm2 in both lower lobes) in both upper lung lobes compared with the lower lobes. An increasing number of facets (f_alv) from top to bottom (12 and 14 in the upper lobes; 14 and 15 in the lower lobes), as well as a decreasing number of alveolar neighbors (nei_alv: 9 and 8 in the upper lobes; 8 and 7 in the lower lobes) from the upper lobes to the lower lobes were observed. We could observe an increasing ratio of alveolar entrance size to the surface size of the alveoli from top to bottom (S_ratio_alv: 0.71 and 0.64 in the upper lobes, 0.73 and 0.70 in the lower lobes). The angles between facet normals (ang_alv) were larger in the upper lobes (67.72° and 62.44°) of both lungs than in the lower lobes (66.19° and 61.30°). By using this new approach of analyzing alveolar 3-D data, which enables the estimation of facet, neighbor, and shape characteristics, we aimed to establish the baseline measures for in-depth studies of mechanical conditions and morphology.


Asunto(s)
Pulmón , Alveolos Pulmonares , Humanos , Microtomografía por Rayos X , Pulmón/diagnóstico por imagen , Alveolos Pulmonares/diagnóstico por imagen , Mediciones del Volumen Pulmonar
9.
Cell Mol Life Sci ; 79(3): 151, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35212819

RESUMEN

Endoplasmic reticulum (ER) and mitochondria (mito) play a vital role in alveolar type II cell (AEC2) homeostasis and are both stressed in patients with idiopathic pulmonary fibrosis (IPF). Up to now, no data are available with regard to ER-mito cross talk and tethering under conditions of IPF. We here demonstrate that ER-mitochondrial tethering is reduced upon experimental ER stress in vitro and in the IPF AECII ex vivo, and this is-at least in part-due to decreased phosphofurin acidic cluster sorting protein 2 (PACS-2, also called PACS2) protein levels. PACS2 levels are influenced by its interaction with the transient receptor potential cation channel subfamily V member 1 (TRPV1) and can be experimentally modified by the TRPV1-modulating drug capsaicin (CPS). Employing alveolar epithelial cells with overexpression of the terminal ER stress signaling factor Chop or the IPF-associated surfactant protein C mutation (SPCΔexon4) in vitro, we observed a restoration of PACS2 levels upon treatment with CPS. Similarly, treatment of precision cut lung slices from IPF patients with CPS ex vivo forwarded similar effects. Importantly, in all models such kind of intervention also greatly reduced the extent of alveolar epithelial apoptosis. We therefore conclude that therapeutic targeting of the PACS2-TRPV1 axis represents an interesting novel, epithelial-protective approach in IPF.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Canales Catiónicos TRPV/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Animales , Apoptosis/efectos de los fármacos , Capsaicina/farmacología , Línea Celular , Doxorrubicina/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/citología , Pulmón/metabolismo , Ratones , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Proteínas de Transporte Vesicular/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
10.
Nanomedicine ; 50: 102679, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37116556

RESUMEN

Acute respiratory distress syndrome (ARDS) has high mortality (~40 %) and requires the lifesaving intervention of mechanical ventilation. A variety of systemic inflammatory insults can progress to ARDS, and the inflamed and injured lung is susceptible to ventilator-induced lung injury (VILI). Strategies to mitigate the inflammatory response while restoring pulmonary function are limited, thus we sought to determine if treatment with CNP-miR146a, a conjugate of novel free radical scavenging cerium oxide nanoparticles (CNP) to the anti-inflammatory microRNA (miR)-146a, would protect murine lungs from acute lung injury (ALI) induced with intratracheal endotoxin and subsequent VILI. Lung injury severity and treatment efficacy were evaluated via lung mechanical function, relative gene expression of inflammatory biomarkers, and lung morphometry (stereology). CNP-miR146a reduced the severity of ALI and slowed the progression of VILI, evidenced by improvements in inflammatory biomarkers, atelectasis, gas volumes in the parenchymal airspaces, and the stiffness of the pulmonary system.


Asunto(s)
Lesión Pulmonar Aguda , Síndrome de Dificultad Respiratoria , Lesión Pulmonar Inducida por Ventilación Mecánica , Humanos , Ratones , Animales , Pulmón/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/tratamiento farmacológico , Lesión Pulmonar Inducida por Ventilación Mecánica/genética , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/genética
11.
Ultraschall Med ; 44(1): 36-49, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36228630

RESUMEN

OBJECTIVE: To evaluate the evidence and produce a summary and recommendations for the most common heart and lung point-of-care ultrasound (PoCUS). METHODS: We reviewed 10 clinical domains/questions related to common heart and lung applications of PoCUS. Following review of the evidence, a summary and recommendations were produced, including assigning levels of evidence (LoE) and grading of recommendation, assessment, development, and evaluation (GRADE). 38 international experts, the expert review group (ERG), were invited to review the evidence presented for each question. A level of agreement of over 75 % was required to progress to the next section. The ERG then reviewed and indicated their level of agreement of the summary and recommendation for each question (using a 5-point Likert scale), which was approved in the case of a level of agreement of greater than 75 %. A level of agreement was defined as a summary of "strongly agree" and "agree" on the Likert scale responses. FINDINGS AND RECOMMENDATIONS: One question achieved a strong consensus for an assigned LoE of 3 and a weak GRADE recommendation (question 1), the remaining 9 questions achieved broad agreement with an assigned LoE of 4 and a weak GRADE recommendation (question 2), three achieved an LoE of 3 with a weak GRADE recommendation (questions 3-5), three achieved an LoE of 3 with a strong GRADE recommendation (questions 6-8) and the remaining two were assigned an LoE of 2 with a strong GRADE recommendation (questions 9 and 10). CONCLUSION: These consensus-derived recommendations should aid clinical practice and highlight areas of further research for PoCUS in acute settings.


Asunto(s)
Sistemas de Atención de Punto , Pruebas en el Punto de Atención , Humanos , Pulmón , Ultrasonografía
12.
Ultraschall Med ; 44(1): e1-e24, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36228631

RESUMEN

AIMS: To evaluate the evidence and produce a summary and recommendations for the most common heart and lung applications of point-of-care ultrasound (PoCUS). METHODS: We reviewed 10 clinical domains/questions related to common heart and lung applications of PoCUS. Following review of the evidence, a summary and recommendation were produced, including assignment of levels of evidence (LoE) and grading of the recommendation, assessment, development, and evaluation (GRADE). 38 international experts, the expert review group (ERG), were invited to review the evidence presented for each question. A level of agreement of over 75 % was required to progress to the next section. The ERG then reviewed and indicated their level of agreement regarding the summary and recommendation for each question (using a 5-point Likert scale), which was approved if a level of agreement of greater than 75 % was reached. A level of agreement was defined as a summary of "strongly agree" and "agree" on the Likert scale responses. FINDINGS AND RECOMMENDATIONS: One question achieved a strong consensus for an assigned LoE of 3 and a weak GRADE recommendation (question 1). The remaining 9 questions achieved broad agreement with one assigned an LoE of 4 and weak GRADE recommendation (question 2), three achieving an LoE of 3 with a weak GRADE recommendation (questions 3-5), three achieved an LoE of 3 with a strong GRADE recommendation (questions 6-8), and the remaining two were assigned an LoE of 2 with a strong GRADE recommendation (questions 9 and 10). CONCLUSION: These consensus-derived recommendations should aid clinical practice and highlight areas of further research for PoCUS in acute settings.


Asunto(s)
Sistemas de Atención de Punto , Pruebas en el Punto de Atención , Humanos , Pulmón , Ultrasonografía
13.
Eur Radiol ; 32(9): 6046-6057, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35357537

RESUMEN

OBJECTIVES: Idiopathic pulmonary fibrosis (IPF) is a disease with a poor prognosis and a highly variable course. Pathologically increased ventilation-accessible by functional CT-is discussed as a potential predecessor of lung fibrosis. The purpose of this feasibility study was to investigate whether increased regional ventilation at baseline CT and morphological changes in the follow-up CT suggestive for fibrosis indeed occur in spatial correspondence. METHODS: In this retrospective study, CT scans were performed at two time points between September 2016 and November 2020. Baseline ventilation was divided into four categories ranging from low, normal to moderately, and severely increased (C1-C4). Correlation between baseline ventilation and volume and density change at follow-up was investigated in corresponding voxels. The significance of the difference of density and volume change per ventilation category was assessed using paired t-tests with a significance level of p ≤ 0.05. The analysis was performed separately for normal (NAA) and high attenuation areas (HAA). RESULTS: The study group consisted of 41 patients (73 ± 10 years, 36 men). In both NAA and HAA, significant increases of density and loss of volume were seen in areas of severely increased ventilation (C4) at baseline compared to areas of normal ventilation (C2, p < 0.001). In HAA, morphological changes were more heterogeneous compared to NAA. CONCLUSION: Functional CT assessing the extent and distribution of lung parenchyma with pathologically increased ventilation may serve as an imaging marker to prospectively identify lung parenchyma at risk for developing fibrosis. KEY POINTS: • Voxelwise correlation of serial CT scans suggests spatial correspondence between increased ventilation at baseline and structural changes at follow-up. • Regional assessment of pathologically increased ventilation at baseline has the potential to prospectively identify tissue at risk for developing fibrosis. • Presence and extent of pathologically increased ventilation may serve as an early imaging marker of disease activity.


Asunto(s)
Fibrosis Pulmonar Idiopática , Pulmón , Progresión de la Enfermedad , Estudios de Factibilidad , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Masculino , Estudios Retrospectivos
14.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L291-L307, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34132118

RESUMEN

ATP-binding cassette class A3 (ABCA3) is a lipid transporter that plays a critical role in pulmonary surfactant function. The substitution of valine for glutamic acid at codon 292 (E292V) produces a hypomorphic variant that accounts for a significant portion of ABCA3 mutations associated with lung disorders spanning from neonatal respiratory distress syndrome and childhood interstitial lung disease to diffuse parenchymal lung disease (DPLD) in adults including pulmonary fibrosis. The mechanisms by which this and similar ABCA3 mutations disrupt alveolar type 2 (AT2) cell homeostasis and cause DPLD are largely unclear. The present study, informed by a patient homozygous for the E292V variant, used an in vitro and a preclinical murine model to evaluate the mechanisms by which E292V expression promotes aberrant lung injury and parenchymal remodeling. Cell lines stably expressing enhanced green fluorescent protein (EGFP)-tagged ABCA3 isoforms show a functional deficiency of the ABCA3E292V variant as a lipid transporter. AT2 cells isolated from mice constitutively homozygous for ABCA3E292V demonstrate the presence of small electron-dense lamellar bodies, time-dependent alterations in macroautophagy, and induction of apoptosis. These changes in AT2 cell homeostasis are accompanied by a spontaneous lung phenotype consisting of both age-dependent inflammation and fibrillary collagen deposition in alveolar septa. Older ABCA3E292V mice exhibit increased vulnerability to exogenous lung injury by bleomycin. Collectively, these findings support the hypothesis that the ABCA3E292V variant is a susceptibility factor for lung injury through effects on surfactant deficiency and impaired AT2 cell autophagy.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Células Epiteliales Alveolares , Autofagia , Regulación de la Expresión Génica , Lesión Pulmonar , Mutación Missense , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/genética , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Sustitución de Aminoácidos , Animales , Lesión Pulmonar/genética , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Ratones , Ratones Mutantes , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Síndrome de Dificultad Respiratoria del Recién Nacido/metabolismo , Síndrome de Dificultad Respiratoria del Recién Nacido/patología
15.
Histochem Cell Biol ; 155(2): 163-181, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33051774

RESUMEN

Stereology is the method of choice for the quantitative assessment of biological objects in microscopy. It takes into account the fact that, in traditional microscopy such as conventional light and transmission electron microscopy, although one has to rely on measurements on nearly two-dimensional sections from fixed and embedded tissue samples, the quantitative data obtained by these measurements should characterize the real three-dimensional properties of the biological objects and not just their "flatland" appearance on the sections. Thus, three-dimensionality is a built-in property of stereological sampling and measurement tools. Stereology is, therefore, perfectly suited to be combined with 3D imaging techniques which cover a wide range of complementary sample sizes and resolutions, e.g. micro-computed tomography, confocal microscopy and volume electron microscopy. Here, we review those stereological principles that are of particular relevance for 3D imaging and provide an overview of applications of 3D imaging-based stereology to the lung in health and disease. The symbiosis of stereology and 3D imaging thus provides the unique opportunity for unbiased and comprehensive quantitative characterization of the three-dimensional architecture of the lung from macro to nano scale.


Asunto(s)
Imagenología Tridimensional , Pulmón/ultraestructura , Animales , Humanos , Microscopía Electrónica
16.
Histochem Cell Biol ; 155(2): 183-202, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33188462

RESUMEN

Mechanical ventilation triggers the manifestation of lung injury and pre-injured lungs are more susceptible. Ventilation-induced abnormalities of alveolar surfactant are involved in injury progression. The effects of mechanical ventilation on the surfactant system might be different in healthy compared to pre-injured lungs. In the present study, we investigated the effects of different positive end-expiratory pressure (PEEP) ventilations on the structure of the blood-gas barrier, the ultrastructure of alveolar epithelial type II (AE2) cells and the intracellular surfactant pool (= lamellar bodies, LB). Rats were randomized into bleomycin-pre-injured or healthy control groups. One day later, rats were either not ventilated, or ventilated with PEEP = 1 or 5 cmH2O and a tidal volume of 10 ml/kg bodyweight for 3 h. Left lungs were subjected to design-based stereology, right lungs to measurements of surfactant proteins (SP-) B and C expression. In pre-injured lungs without ventilation, the expression of SP-C was reduced by bleomycin; while, there were fewer and larger LB compared to healthy lungs. PEEP = 1 cmH2O ventilation of bleomycin-injured lungs was linked with the thickest blood-gas barrier due to increased septal interstitial volumes. In healthy lungs, increasing PEEP levels reduced mean AE2 cell size and volume of LB per AE2 cell; while in pre-injured lungs, volumes of AE2 cells and LB per cell remained stable across PEEPs. Instead, in pre-injured lungs, increasing PEEP levels increased the number and decreased the mean size of LB. In conclusion, mechanical ventilation-induced alterations in LB ultrastructure differ between healthy and pre-injured lungs. PEEP = 1 cmH2O but not PEEP = 5 cmH2O ventilation aggravated septal interstitial abnormalities after bleomycin challenge.


Asunto(s)
Barrera Alveolocapilar/metabolismo , Enfermedades Pulmonares/metabolismo , Pulmón/metabolismo , Surfactantes Pulmonares/metabolismo , Respiración Artificial , Animales , Bleomicina , Enfermedades Pulmonares/inducido químicamente , Masculino , Ratas , Ratas Endogámicas F344
17.
Eur Radiol ; 31(9): 6640-6651, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33725189

RESUMEN

OBJECTIVES: The individual course of disease in idiopathic pulmonary fibrosis (IPF) is highly variable. Assessment of disease activity and prospective estimation of disease progression might have the potential to improve therapy management and indicate the onset of treatment at an earlier stage. The aim of this study was to evaluate whether regional ventilation, lung perfusion, and late enhancement can serve as early imaging markers for disease progression in patients with IPF. METHODS: In this retrospective study, contrast-enhanced dual-energy CT scans of 32 patients in inspiration and delayed expiration were performed at two time points with a mean interval of 15.4 months. The pulmonary blood volume (PBV) images obtained in the arterial and delayed perfusion phase served as a surrogate for arterial lung perfusion and parenchymal late enhancement. The virtual non-contrast (VNC) images in inspiration and expiration were non-linearly registered to provide regional ventilation images. Image-derived parameters were correlated with longitudinal changes of lung function (FVC%, DLCO%), mean lung density in CT, and CT-derived lung volume. RESULTS: Regional ventilation and late enhancement at baseline preceded future change in lung volume (R - 0.474, p 0.006/R - 0.422, p 0.016, respectively) and mean lung density (R - 0.469, p 0.007/R - 0.402, p 0.022, respectively). Regional ventilation also correlated with a future change in FVC% (R - 0.398, p 0.024). CONCLUSION: CT-derived functional parameters of regional ventilation and parenchymal late enhancement are potential early imaging markers for idiopathic pulmonary fibrosis progression. KEY POINTS: • Functional CT parameters at baseline (regional ventilation and late enhancement) correlate with future structural changes of the lung as measured with loss of lung volume and increase in lung density in serial CT scans of patients with idiopathic pulmonary fibrosis. • Functional CT parameter measurements in high-attenuation areas (- 600 to - 250 HU) are significantly different from normal-attenuation areas (- 950 to - 600 HU) of the lung. • Mean regional ventilation in functional CT correlates with a future change in forced vital capacity (FVC) in pulmonary function tests.


Asunto(s)
Fibrosis Pulmonar Idiopática , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Estudios Prospectivos , Pruebas de Función Respiratoria , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
18.
Cell Mol Life Sci ; 77(4): 573-591, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31501970

RESUMEN

Gap junctions consist of arrays of intercellular channels that enable adjacent cells to communicate both electrically and metabolically. Gap junctions have a wide diversity of physiological functions, playing critical roles in both excitable and non-excitable tissues. Gap junction channels are formed by integral membrane proteins called connexins. Inherited or acquired alterations in connexins are associated with numerous diseases, including heart failure, neuropathologies, deafness, skin disorders, cataracts and cancer. Gap junctions are highly dynamic structures and by modulating the turnover rate of connexins, cells can rapidly alter the number of gap junction channels at the plasma membrane in response to extracellular or intracellular cues. Increasing evidence suggests that ubiquitination has important roles in the regulation of endoplasmic reticulum-associated degradation of connexins as well as in the modulation of gap junction endocytosis and post-endocytic sorting of connexins to lysosomes. In recent years, researchers have also started to provide insights into the physiological roles of connexin ubiquitination in specific tissue types. This review provides an overview of the advances made in understanding the roles of connexin ubiquitination in the regulation of gap junction intercellular communication and discusses the emerging physiological and pathophysiological implications of these processes.


Asunto(s)
Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Ubiquitinación , Animales , Catarata/metabolismo , Catarata/patología , Comunicación Celular , Conexina 43/metabolismo , Uniones Comunicantes/patología , Cardiopatías/metabolismo , Cardiopatías/patología , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Procesamiento Proteico-Postraduccional
19.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34299227

RESUMEN

Our previous study showed that in adult mice, conditional Nedd4-2-deficiency in club and alveolar epithelial type II (AE2) cells results in impaired mucociliary clearance, accumulation of Muc5b and progressive, terminal pulmonary fibrosis within 16 weeks. In the present study, we investigated ultrastructural alterations of the alveolar epithelium in relation to interstitial remodeling in alveolar septa as a function of disease progression. Two, eight and twelve weeks after induction of Nedd4-2 knockout, lungs were fixed and subjected to design-based stereological investigation at the light and electron microscopic level. Quantitative data did not show any abnormalities until 8 weeks compared to controls. At 12 weeks, however, volume of septal wall tissue increased while volume of acinar airspace and alveolar surface area significantly decreased. Volume and surface area of alveolar epithelial type I cells were reduced, which could not be compensated by a corresponding increase of AE2 cells. The volume of collagen fibrils in septal walls increased and was linked with an increase in blood-gas barrier thickness. A high correlation between parameters reflecting interstitial remodeling and abnormal AE2 cell ultrastructure could be established. Taken together, abnormal regeneration of the alveolar epithelium is correlated with interstitial septal wall remodeling.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/ultraestructura , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Células Epiteliales Alveolares/fisiología , Animales , Células Epiteliales/metabolismo , Femenino , Fibrosis/metabolismo , Fibrosis/patología , Pulmón/patología , Masculino , Ratones , Ratones Noqueados , Ubiquitina-Proteína Ligasas Nedd4/genética , Alveolos Pulmonares/patología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Surfactantes Pulmonares , Mucosa Respiratoria/metabolismo
20.
Am J Respir Cell Mol Biol ; 62(4): 466-478, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31922895

RESUMEN

Surfactant protein (SP)-C deficiency is found in samples from patients with idiopathic pulmonary fibrosis, especially in familial forms of this disease. We hypothesized that SP-C may contribute to fibrotic remodeling in aging mice and alveolar lipid homeostasis. For this purpose, we analyzed lung function, alveolar dynamics, lung structure, collagen content, and expression of genes related to lipid and cholesterol metabolism of aging SP-C knockout mice. In addition, in vitro experiments with an alveolar macrophage cell line exposed to lipid vesicles with or without cholesterol and/or SP-C were performed. Alveolar dynamics showed progressive alveolar derecruitment with age and impaired oxygen saturation. Lung structure revealed that decreasing volume density of alveolar spaces was accompanied by increasing of the ductal counterparts. Simultaneously, septal wall thickness steadily increased, and fibrotic wounds appeared in lungs from the age of 50 weeks. This remarkable phenotype is unique to the 129Sv strain, which has an increased absorption of cholesterol, linking the accumulation of cholesterol and the absence of SP-C to a fibrotic remodeling process. The findings of this study suggest that overall loss of SP-C results in an age-dependent, complex, heterogeneous phenotype characterized by a combination of overdistended air spaces and fibrotic wounds that resembles combined emphysema and pulmonary fibrosis in patients with idiopathic pulmonary fibrosis. Addition of SP-C to cholesterol-laden lipid vesicles enhanced the expression of cholesterol metabolism and transport genes in an alveolar macrophage cell line, identifying a potential new lipid-protein axis involved in lung remodeling.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Colesterol/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Proteína C/metabolismo , Surfactantes Pulmonares/metabolismo , Anciano , Animales , Enfisema/metabolismo , Humanos , Metabolismo de los Lípidos/fisiología , Pulmón/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Ratones , Ratones Noqueados , Alveolos Pulmonares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA