Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell ; 164(4): 681-94, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26853473

RESUMEN

Non-small cell lung cancer (NSCLC) is heterogeneous in the genetic and environmental parameters that influence cell metabolism in culture. Here, we assessed the impact of these factors on human NSCLC metabolism in vivo using intraoperative (13)C-glucose infusions in nine NSCLC patients to compare metabolism between tumors and benign lung. While enhanced glycolysis and glucose oxidation were common among these tumors, we observed evidence for oxidation of multiple nutrients in each of them, including lactate as a potential carbon source. Moreover, metabolically heterogeneous regions were identified within and between tumors, and surprisingly, our data suggested potential contributions of non-glucose nutrients in well-perfused tumor areas. Our findings not only demonstrate the heterogeneity in tumor metabolism in vivo but also highlight the strong influence of the microenvironment on this feature.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Microambiente Tumoral , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/irrigación sanguínea , Ciclo del Ácido Cítrico , Femenino , Glucólisis , Humanos , Neoplasias Pulmonares/irrigación sanguínea , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones
2.
Mol Cell ; 76(5): 838-851.e5, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31564558

RESUMEN

Intermediary metabolism in cancer cells is regulated by diverse cell-autonomous processes, including signal transduction and gene expression patterns, arising from specific oncogenotypes and cell lineages. Although it is well established that metabolic reprogramming is a hallmark of cancer, we lack a full view of the diversity of metabolic programs in cancer cells and an unbiased assessment of the associations between metabolic pathway preferences and other cell-autonomous processes. Here, we quantified metabolic features, mostly from the 13C enrichment of molecules from central carbon metabolism, in over 80 non-small cell lung cancer (NSCLC) cell lines cultured under identical conditions. Because these cell lines were extensively annotated for oncogenotype, gene expression, protein expression, and therapeutic sensitivity, the resulting database enables the user to uncover new relationships between metabolism and these orthogonal processes.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral/metabolismo , Metaboloma/fisiología , Biomarcadores de Tumor/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Regulación Neoplásica de la Expresión Génica/fisiología , Glucosa/metabolismo , Glutamina/metabolismo , Humanos , Redes y Vías Metabólicas/genética , Metabolómica/métodos , Neoplasias/metabolismo
3.
Mol Cell ; 56(3): 414-424, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25458842

RESUMEN

Alternative modes of metabolism enable cells to resist metabolic stress. Inhibiting these compensatory pathways may produce synthetic lethality. We previously demonstrated that glucose deprivation stimulated a pathway in which acetyl-CoA was formed from glutamine downstream of glutamate dehydrogenase (GDH). Here we show that import of pyruvate into the mitochondria suppresses GDH and glutamine-dependent acetyl-CoA formation. Inhibiting the mitochondrial pyruvate carrier (MPC) activates GDH and reroutes glutamine metabolism to generate both oxaloacetate and acetyl-CoA, enabling persistent tricarboxylic acid (TCA) cycle function. Pharmacological blockade of GDH elicited largely cytostatic effects in culture, but these effects became cytotoxic when combined with MPC inhibition. Concomitant administration of MPC and GDH inhibitors significantly impaired tumor growth compared to either inhibitor used as a single agent. Together, the data define a mechanism to induce glutaminolysis and uncover a survival pathway engaged during compromised supply of pyruvate to the mitochondria.


Asunto(s)
Supervivencia Celular , Ciclo del Ácido Cítrico , Glutamina/metabolismo , Ácido Pirúvico/metabolismo , Acetilcoenzima A/biosíntesis , Animales , Antineoplásicos/farmacología , Transporte Biológico , Catequina/análogos & derivados , Catequina/farmacología , Línea Celular Tumoral , Ácido Cítrico/metabolismo , Ácidos Cumáricos/farmacología , Glucosa/metabolismo , Humanos , Metabolismo de los Lípidos , Masculino , Ratones Desnudos , Mitocondrias/metabolismo , Oxidación-Reducción , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
4.
J Inherit Metab Dis ; 44(4): 949-960, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33855712

RESUMEN

Glutamyl-tRNA synthetase 2 (encoded by EARS2) is a mitochondrial aminoacyl-tRNA synthetase required to translate the 13 subunits of the electron transport chain encoded by the mitochondrial DNA. Pathogenic EARS2 variants cause combined oxidative phosphorylation deficiency, subtype 12 (COXPD12), an autosomal recessive disorder involving lactic acidosis, intellectual disability, and other features of mitochondrial compromise. Patients with EARS2 deficiency present with variable phenotypes ranging from neonatal lethality to a mitigated disease with clinical improvement in early childhood. Here, we report a neonate homozygous for a rare pathogenic variant in EARS2 (c.949G>T; p.G317C). Metabolomics in primary fibroblasts from this patient revealed expected abnormalities in TCA cycle metabolites, as well as numerous changes in purine, pyrimidine, and fatty acid metabolism. To examine genotype-phenotype correlations in COXPD12, we compared the metabolic impact of reconstituting these fibroblasts with wild-type EARS2 versus four additional EARS2 variants from COXPD12 patients with varying clinical severity. Metabolomics identified a group of signature metabolites, mostly from the TCA cycle and amino acid metabolism, that discriminate between EARS2 variants causing relatively mild and severe COXPD12. Taken together, these findings indicate that metabolomics in patient-derived fibroblasts may help establish genotype-phenotype correlations in EARS2 deficiency and likely other mitochondrial disorders.


Asunto(s)
Variación Genética/genética , Glutamato-ARNt Ligasa/genética , Leucoencefalopatías/genética , Errores Innatos del Metabolismo/genética , Acidosis Láctica/etiología , Aminoacil-ARNt Sintetasas/genética , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Glutamato-ARNt Ligasa/metabolismo , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/etiología , Leucoencefalopatías/metabolismo , Masculino , Errores Innatos del Metabolismo/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación
5.
Metab Eng ; 43(Pt B): 198-207, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-27856334

RESUMEN

The mitochondrial citrate transport protein (CTP), encoded by SLC25A1, accommodates bidirectional trafficking of citrate between the mitochondria and cytosol, supporting lipid biosynthesis and redox homeostasis. Genetic CTP deficiency causes a fatal neurodevelopmental syndrome associated with the accumulation of L- and D-2-hydroxyglutaric acid, and elevated CTP expression is associated with poor prognosis in several types of cancer, emphasizing the importance of this transporter in multiple human pathologies. Here we describe the metabolic consequences of CTP deficiency in cancer cells. As expected from the phenotype of CTP-deficient humans, somatic CTP loss in cancer cells induces broad dysregulation of mitochondrial metabolism, resulting in accumulation of lactate and of the L- and D- enantiomers of 2-hydroxyglutarate (2HG) and depletion of TCA cycle intermediates. It also eliminates mitochondrial import of citrate from the cytosol. To quantify the impact of CTP deficiency on metabolic flux, cells were cultured with a set of 13C-glucose and 13C-glutamine tracers with resulting data integrated by metabolic flux analysis (MFA). CTP-deficient cells displayed a major restructuring of central carbon metabolism, including suppression of pyruvate dehydrogenase (PDH) and induction of glucose-dependent anaplerosis through pyruvate carboxylase (PC). We also observed an unusual lipogenic pathway in which carbon from glucose supplies mitochondrial production of alpha-ketoglutarate (AKG), which is then trafficked to the cytosol and used to supply reductive carboxylation by isocitrate dehydrogenase 1 (IDH1). The resulting citrate is cleaved to produce lipogenic acetyl-CoA, thereby completing a novel pathway of glucose-dependent reductive carboxylation. In CTP deficient cells, IDH1 inhibition suppresses lipogenesis from either glucose or glutamine, implicating IDH1 as a required component of fatty acid synthesis in states of CTP deficiency.


Asunto(s)
Proteínas de Transporte de Anión/deficiencia , Ácidos Grasos/biosíntesis , Mitocondrias/metabolismo , Proteínas Mitocondriales/deficiencia , Proteínas de Neoplasias , Neoplasias/metabolismo , Línea Celular Tumoral , Ácidos Grasos/genética , Humanos , Mitocondrias/genética , Mitocondrias/patología , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Transportadores de Anión Orgánico
6.
Cell Metab ; 36(7): 1504-1520.e9, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38876105

RESUMEN

Mitochondria house many metabolic pathways required for homeostasis and growth. To explore how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts from patients with various mitochondrial disorders and cancer cells with electron transport chain (ETC) blockade. These analyses revealed extensive perturbations in purine metabolism, and stable isotope tracing demonstrated that ETC defects suppress de novo purine synthesis while enhancing purine salvage. In human lung cancer, tumors with markers of low oxidative mitochondrial metabolism exhibit enhanced expression of the salvage enzyme hypoxanthine phosphoribosyl transferase 1 (HPRT1) and high levels of the HPRT1 product inosine monophosphate. Mechanistically, ETC blockade activates the pentose phosphate pathway, providing phosphoribosyl diphosphate to drive purine salvage supplied by uptake of extracellular bases. Blocking HPRT1 sensitizes cancer cells to ETC inhibition. These findings demonstrate how cells remodel purine metabolism upon ETC blockade and uncover a new metabolic vulnerability in tumors with low respiration.


Asunto(s)
Mitocondrias , Purinas , Humanos , Purinas/metabolismo , Purinas/farmacología , Mitocondrias/metabolismo , Transporte de Electrón , Hipoxantina Fosforribosiltransferasa/metabolismo , Hipoxantina Fosforribosiltransferasa/genética , Vía de Pentosa Fosfato , Fibroblastos/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Línea Celular Tumoral , Animales , Transporte Biológico
7.
Cancers (Basel) ; 15(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36672480

RESUMEN

Most tumor cells can use glutamine (Gln) for energy generation and biosynthetic purposes. Glutaminases (GAs) convert Gln into glutamate and ammonium. In humans, GAs are encoded by two genes: GLS and GLS2. In glioblastoma, GLS is commonly overexpressed and considered pro-oncogenic. We studied the metabolic effects of inhibiting GLS activity in T98G, LN229, and U87MG human glioblastoma cell lines by using the inhibitor CB-839. We performed metabolomics and isotope tracing experiments using U-13C-labeled Gln, as well as 15N-labeled Gln in the amide group, to determine the metabolic fates of Gln carbon and nitrogen atoms. In the presence of the inhibitor, the results showed an accumulation of Gln and lower levels of tricarboxylic acid cycle intermediates, and aspartate, along with a decreased oxidative labeling and diminished reductive carboxylation-related labeling of these metabolites. Additionally, CB-839 treatment caused decreased levels of metabolites from pyrimidine biosynthesis and an accumulation of intermediate metabolites in the de novo purine nucleotide biosynthesis pathway. The levels of some acetylated and methylated metabolites were significantly increased, including acetyl-carnitine, trimethyl-lysine, and 5-methylcytosine. In conclusion, we analyzed the metabolic landscape caused by the GLS inhibition of CB-839 in human glioma cells, which might lead to the future development of new combination therapies with CB-839.

8.
Cell Metab ; 35(10): 1830-1843.e5, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37611583

RESUMEN

Stable isotopes are powerful tools to assess metabolism. 13C labeling is detected using nuclear magnetic resonance (NMR) spectroscopy or mass spectrometry (MS). MS has excellent sensitivity but generally cannot discriminate among different 13C positions (isotopomers), whereas NMR is less sensitive but reports some isotopomers. Here, we develop an MS method that reports all 16 aspartate and 32 glutamate isotopomers while requiring less than 1% of the sample used for NMR. This method discriminates between pathways that result in the same number of 13C labels in aspartate and glutamate, providing enhanced specificity over conventional MS. We demonstrate regional metabolic heterogeneity within human tumors, document the impact of fumarate hydratase (FH) deficiency in human renal cancers, and investigate the contributions of tricarboxylic acid (TCA) cycle turnover and CO2 recycling to isotope labeling in vivo. This method can accompany NMR or standard MS to provide outstanding sensitivity in isotope-labeling experiments, particularly in vivo.


Asunto(s)
Ácido Aspártico , Ácido Glutámico , Humanos , Isótopos de Carbono , Ciclo del Ácido Cítrico , Espectrometría de Masas
9.
bioRxiv ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37214913

RESUMEN

Cancer cells reprogram their metabolism to support cell growth and proliferation in harsh environments. While many studies have documented the importance of mitochondrial oxidative phosphorylation (OXPHOS) in tumor growth, some cancer cells experience conditions of reduced OXPHOS in vivo and induce alternative metabolic pathways to compensate. To assess how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts and plasma from patients with inborn errors of mitochondrial metabolism, and in cancer cells subjected to inhibition of the electron transport chain (ETC). All these analyses revealed extensive perturbations in purine-related metabolites; in non-small cell lung cancer (NSCLC) cells, ETC blockade led to purine metabolite accumulation arising from a reduced cytosolic NAD + /NADH ratio (NADH reductive stress). Stable isotope tracing demonstrated that ETC deficiency suppressed de novo purine nucleotide synthesis while enhancing purine salvage. Analysis of NSCLC patients infused with [U- 13 C]glucose revealed that tumors with markers of low oxidative mitochondrial metabolism exhibited high expression of the purine salvage enzyme HPRT1 and abundant levels of the HPRT1 product inosine monophosphate (IMP). ETC blockade also induced production of ribose-5' phosphate (R5P) by the pentose phosphate pathway (PPP) and import of purine nucleobases. Blocking either HPRT1 or nucleoside transporters sensitized cancer cells to ETC inhibition, and overexpressing nucleoside transporters was sufficient to drive growth of NSCLC xenografts. Collectively, this study mechanistically delineates how cells compensate for suppressed purine metabolism in response to ETC blockade, and uncovers a new metabolic vulnerability in tumors experiencing NADH excess.

10.
bioRxiv ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38168314

RESUMEN

Metabolomic profiling is instrumental in understanding the systemic and cellular impact of inborn errors of metabolism (IEMs), monogenic disorders caused by pathogenic genomic variants in genes involved in metabolism. This study encompasses untargeted metabolomics analysis of plasma from 474 individuals and fibroblasts from 67 subjects, incorporating healthy controls, patients with 65 different monogenic diseases, and numerous undiagnosed cases. We introduce a web application designed for the in-depth exploration of this extensive metabolomics database. The application offers a user-friendly interface for data review, download, and detailed analysis of metabolic deviations linked to IEMs at the level of individual patients or groups of patients with the same diagnosis. It also provides interactive tools for investigating metabolic relationships and offers comparative analyses of plasma and fibroblast profiles. This tool emphasizes the metabolic interplay within and across biological matrices, enriching our understanding of metabolic regulation in health and disease. As a resource, the application provides broad utility in research, offering novel insights into metabolic pathways and their alterations in various disorders.

11.
Sci Adv ; 8(35): eabn9550, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36044570

RESUMEN

In mice and humans with cancer, intravenous 13C-glucose infusion results in 13C labeling of tumor tricarboxylic acid (TCA) cycle intermediates, indicating that pyruvate oxidation in the TCA cycle occurs in tumors. The TCA cycle is usually coupled to the electron transport chain (ETC) because NADH generated by the cycle is reoxidized to NAD+ by the ETC. However, 13C labeling does not directly report ETC activity, and other pathways can oxidize NADH, so the ETC's role in these labeling patterns is unverified. We examined the impact of the ETC complex I inhibitor IACS-010759 on tumor 13C labeling. IACS-010759 suppresses TCA cycle labeling from glucose or lactate and increases labeling from glutamine. Cancer cells expressing yeast NADH dehydrogenase-1, which recycles NADH to NAD+ independently of complex I, display normalized labeling when complex I is inhibited, indicating that cancer cell ETC activity regulates TCA cycle metabolism and 13C labeling from multiple nutrients.


Asunto(s)
Complejo I de Transporte de Electrón , Glucosa , Glutamina , Neoplasias , Animales , Transporte de Electrón , Complejo I de Transporte de Electrón/metabolismo , Glucosa/metabolismo , Glutamina/metabolismo , Humanos , Isótopos , Ratones , NAD/metabolismo , Neoplasias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Cancer Metab ; 8: 9, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32789014

RESUMEN

BACKGROUND: Glioblastoma (GBM) are highly heterogeneous on the cellular and molecular basis. It has been proposed that glutamine metabolism of primary cells established from human tumors discriminates aggressive mesenchymal GBM subtype to other subtypes. METHODS: To study glutamine metabolism in vivo, we used a human orthotopic mouse model for GBM. Tumors evolving from the implanted primary GBM cells expressing different molecular signatures were analyzed using mass spectrometry for their metabolite pools and enrichment in carbon 13 (13C) after 13C-glutamine infusion. RESULTS: Our results showed that mesenchymal GBM tumors displayed increased glutamine uptake and utilization compared to both control brain tissue and other GBM subtypes. Furthermore, both glutamine synthetase and transglutaminase-2 were expressed accordingly to GBM metabolic phenotypes. CONCLUSION: Thus, our results outline the specific enhanced glutamine flux in vivo of the aggressive mesenchymal GBM subtype.

13.
Nat Metab ; 2(12): 1401-1412, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33257855

RESUMEN

In non-small-cell lung cancer (NSCLC), concurrent mutations in the oncogene KRAS and the tumour suppressor STK11 (also known as LKB1) encoding the kinase LKB1 result in aggressive tumours prone to metastasis but with liabilities arising from reprogrammed metabolism. We previously demonstrated perturbed nitrogen metabolism and addiction to an unconventional pathway of pyrimidine synthesis in KRAS/LKB1 co-mutant cancer cells. To gain broader insight into metabolic reprogramming in NSCLC, we analysed tumour metabolomes in a series of genetically engineered mouse models with oncogenic KRAS combined with mutations in LKB1 or p53. Metabolomics and gene expression profiling pointed towards activation of the hexosamine biosynthesis pathway (HBP), another nitrogen-related metabolic pathway, in both mouse and human KRAS/LKB1 co-mutant tumours. KRAS/LKB1 co-mutant cells contain high levels of HBP metabolites, higher flux through the HBP pathway and elevated dependence on the HBP enzyme glutamine-fructose-6-phosphate transaminase [isomerizing] 2 (GFPT2). GFPT2 inhibition selectively reduced KRAS/LKB1 co-mutant tumour cell growth in culture, xenografts and genetically modified mice. Our results define a new metabolic vulnerability in KRAS/LKB1 co-mutant tumours and provide a rationale for targeting GFPT2 in this aggressive NSCLC subtype.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Hexosaminas/biosíntesis , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Redes y Vías Metabólicas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Azaserina/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Regulación Neoplásica de la Expresión Génica , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/antagonistas & inhibidores , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/genética , Humanos , Neoplasias Pulmonares/mortalidad , Metabolómica , Ratones , Mutación , Análisis de Supervivencia , Ensayo de Tumor de Célula Madre
14.
Cell Rep ; 27(5): 1376-1386.e6, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31042466

RESUMEN

Inborn errors of metabolism (IEMs) link metabolic defects to human phenotypes. Modern genomics has accelerated IEM discovery, but assessing the impact of genomic variants is still challenging. Here, we integrate genomics and metabolomics to identify a cause of lactic acidosis and epilepsy. The proband is a compound heterozygote for variants in LIPT1, which encodes the lipoyltransferase required for 2-ketoacid dehydrogenase (2KDH) function. Metabolomics reveals abnormalities in lipids, amino acids, and 2-hydroxyglutarate consistent with loss of multiple 2KDHs. Homozygous knockin of a LIPT1 mutation reduces 2KDH lipoylation in utero and results in embryonic demise. In patient fibroblasts, defective 2KDH lipoylation and function are corrected by wild-type, but not mutant, LIPT1 alleles. Isotope tracing reveals that LIPT1 supports lipogenesis and balances oxidative and reductive glutamine metabolism. Altogether, the data extend the role of LIPT1 in metabolic regulation and demonstrate how integrating genomics and metabolomics can uncover broader aspects of IEM pathophysiology.


Asunto(s)
Acidosis Láctica/metabolismo , Aciltransferasas/genética , Mutación con Pérdida de Función , Acidosis Láctica/genética , Acidosis Láctica/patología , Aciltransferasas/metabolismo , Animales , Células Cultivadas , Niño , Ácidos Grasos/metabolismo , Femenino , Fibroblastos/metabolismo , Glutamina/metabolismo , Glutaratos/metabolismo , Humanos , Lipogénesis , Lipoilación , Masculino , Ratones , Oxígeno/metabolismo
15.
Cell Rep ; 23(7): 1907-1914, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29768191

RESUMEN

The conserved GATOR1 complex consisting of NPRL2-NPRL3-DEPDC5 inhibits mammalian target of rapamycin complex 1 (mTORC1) in response to amino acid insufficiency. Here, we show that loss of NPRL2 and GATOR1 function in skeletal muscle causes constitutive activation of mTORC1 signaling in the fed and fasted states. Muscle fibers of NPRL2 knockout animals are significantly larger and show altered fiber-type composition, with more fast-twitch glycolytic and fewer slow-twitch oxidative fibers. NPRL2 muscle knockout mice also have altered running behavior and enhanced glucose tolerance. Furthermore, loss of NPRL2 induces aerobic glycolysis and suppresses glucose entry into the TCA cycle. Such chronic activation of mTORC1 leads to compensatory increases in anaplerotic pathways to replenish TCA intermediates that are consumed for biosynthetic purposes. These phenotypes reveal a fundamental role for the GATOR1 complex in the homeostatic regulation of mitochondrial functions (biosynthesis versus ATP) to mediate carbohydrate utilization in muscle.


Asunto(s)
Glucólisis , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Aerobiosis , Aminoácidos/metabolismo , Animales , Conducta Animal , Metabolismo de los Hidratos de Carbono , Ciclo del Ácido Cítrico , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Supresoras de Tumor/metabolismo
16.
Virology ; 476: 271-288, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25569455

RESUMEN

The human T-cell leukemia retrovirus type-1 (HTLV-1) p30(II) protein is a multifunctional latency-maintenance factor that negatively regulates viral gene expression and deregulates host signaling pathways involved in aberrant T-cell growth and proliferation. We have previously demonstrated that p30(II) interacts with the c-MYC oncoprotein and enhances c-MYC-dependent transcriptional and oncogenic functions. However, the molecular and biochemical events that mediate the cooperation between p30(II) and c-MYC remain to be completely understood. Herein we demonstrate that p30(II) induces lysine-acetylation of the c-MYC oncoprotein. Acetylation-defective c-MYC Lys→Arg substitution mutants are impaired for oncogenic transformation with p30(II) in c-myc(-/-) HO15.19 fibroblasts. Using dual-chromatin-immunoprecipitations (dual-ChIPs), we further demonstrate that p30(II) is present in c-MYC-containing nucleoprotein complexes in HTLV-1-transformed HuT-102 T-lymphocytes. Moreover, p30(II) inhibits apoptosis in proliferating cells expressing c-MYC under conditions of genotoxic stress. These findings suggest that c-MYC-acetylation is required for the cooperation between p30(II)/c-MYC which could promote proviral replication and contribute to HTLV-1-induced carcinogenesis.


Asunto(s)
Transformación Celular Neoplásica , Infecciones por HTLV-I/metabolismo , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas de los Retroviridae/metabolismo , Acetilación , Secuencias de Aminoácidos , Proliferación Celular , Transformación Celular Viral , Infecciones por HTLV-I/genética , Infecciones por HTLV-I/fisiopatología , Infecciones por HTLV-I/virología , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas de los Retroviridae/genética
17.
Cancer Metab ; 3: 7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26137220

RESUMEN

BACKGROUND: Pyruvate dehydrogenase (PDH) occupies a central node of intermediary metabolism, converting pyruvate to acetyl-CoA, thus committing carbon derived from glucose to an aerobic fate rather than an anaerobic one. Rapidly proliferating tissues, including human tumors, use PDH to generate energy and macromolecular precursors. However, evidence supports the benefits of constraining maximal PDH activity under certain contexts, including hypoxia and oncogene-induced cell growth. Although PDH is one of the most widely studied enzyme complexes in mammals, its requirement for cell growth is unknown. In this study, we directly addressed whether PDH is required for mammalian cells to proliferate. RESULTS: We genetically suppressed expression of the PDHA1 gene encoding an essential subunit of the PDH complex and characterized the effects on intermediary metabolism and cell proliferation using a combination of stable isotope tracing and growth assays. Surprisingly, rapidly dividing cells tolerated loss of PDH activity without major effects on proliferative rates in complete medium. PDH suppression increased reliance on extracellular lipids, and in some cell lines, reducing lipid availability uncovered a modest growth defect that could be completely reversed by providing exogenous-free fatty acids. PDH suppression also shifted the source of lipogenic acetyl-CoA from glucose to glutamine, and this compensatory pathway required a net reductive isocitrate dehydrogenase (IDH) flux to produce a source of glutamine-derived acetyl-CoA for fatty acids. By deleting the cytosolic isoform of IDH (IDH1), the enhanced contribution of glutamine to the lipogenic acetyl-CoA pool during PDHA1 suppression was eliminated, and growth was modestly suppressed. CONCLUSIONS: Although PDH suppression substantially alters central carbon metabolism, the data indicate that rapid cell proliferation occurs independently of PDH activity. Our findings reveal that this central enzyme is essentially dispensable for growth and proliferation of both primary cells and established cell lines. We also identify the compensatory mechanisms that are activated under PDH deficiency, namely scavenging of extracellular lipids and lipogenic acetyl-CoA production from reductive glutamine metabolism through IDH1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA