Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Kidney Int ; 103(1): 25-28, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36603979

RESUMEN

Transcriptional dysregulation is a prominent contributor to the pathogenesis of autosomal dominant polycystic kidney disease. Lakhia et al. identified an enhancer landscape associated with disease genes and its pathologic role in autosomal dominant polycystic kidney disease to understand cyst formation. This commentary discusses these findings reported by Lakhia et al. in the broader contexts of transcriptional programming and the identification of potential autosomal dominant polycystic kidney disease therapeutic targets.


Asunto(s)
Riñón Poliquístico Autosómico Dominante , Humanos , Riñón Poliquístico Autosómico Dominante/terapia , Riñón
2.
J Am Soc Nephrol ; 33(9): 1726-1741, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35961787

RESUMEN

BACKGROUND: Ciliogenesis-associated kinase 1 (CILK1) is a ciliary gene that localizes in primary cilia and regulates ciliary transport. Mutations in CILK1 cause various ciliopathies. However, the pathogenesis of CILK1-deficient kidney disease is unknown. METHODS: To examine whether CILK1 deficiency causes PKD accompanied by abnormal cilia, we generated mice with deletion of Cilk1 in cells of the renal collecting duct. A yeast two-hybrid system and coimmunoprecipitation (co-IP) were used to identify a novel regulator, kinesin light chain-3 (KLC3), of ciliary trafficking and cyst progression in the Cilk1-deficient model. Immunocytochemistry and co-IP were used to examine the effect of KLC3 on ciliary trafficking of the IFT-B complex and EGFR. We evaluated the effects of these genes on ciliary trafficking and cyst progression by modulating CILK1 and KLC3 expression levels. RESULTS: CILK1 deficiency leads to PKD accompanied by abnormal ciliary trafficking. KLC3 interacts with CILK1 at cilia bases and is increased in cyst-lining cells of CILK1-deficient mice. KLC3 overexpression promotes ciliary recruitment of IFT-B and EGFR in the CILK1 deficiency condition, which contributes to the ciliary defect in cystogenesis. Reduction in KLC3 rescued the ciliary defects and inhibited cyst progression caused by CILK1 deficiency. CONCLUSIONS: Our findings suggest that CILK1 deficiency in renal collecting ducts leads to PKD and promotes ciliary trafficking via increased KLC3.


Asunto(s)
Enfermedades Renales Poliquísticas , Ratones , Animales , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/metabolismo , Riñón/metabolismo , Cilios/metabolismo , Mutación , Receptores ErbB/metabolismo
3.
FASEB J ; 33(2): 2870-2884, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30332302

RESUMEN

Altered miRNA (miR) expression occurs in various diseases. However, the therapeutic effect of miRNAs in autosomal dominant polycystic kidney disease (ADPKD) is unclear. Genome-wide analyses of miRNA expression and DNA methylation status were conducted to identify crucial miRNAs in end-stage ADPKD. miR-192 and -194 levels were down-regulated with hypermethylation at these loci, mainly in the intermediate and late stages, not in the early stage, of cystogenesis, suggesting their potential impact on cyst expansion. Cyst expansion has been strongly associated with endothelial-mesenchymal transition (EMT). Zinc finger E-box-binding homeobox-2 and cadherin-2, which are involved in EMT, were directly regulated by miR-192 and -194. The therapeutic effect of miR-192 and -194 in vivo and in vitro were assessed. Restoring these miRs by injection of precursors influenced the reduced size of cysts in Pkd1 conditional knockout mice. miR-192 and -194 may act as potential therapeutic targets to control the expansion and progression of cysts in patients with ADPKD.-Kim, D. Y., Woo, Y. M., Lee, S., Oh, S., Shin, Y., Shin, J.-O., Park, E. Y., Ko, J. Y., Lee, E. J., Bok, J., Yoo, K. H., Park, J. H. Impact of miR-192 and miR-194 on cyst enlargement through EMT in autosomal dominant polycystic kidney disease.


Asunto(s)
Transición Epitelial-Mesenquimal , Regulación de la Expresión Génica , MicroARNs/genética , Riñón Poliquístico Autosómico Dominante/patología , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Estudios de Casos y Controles , Metilación de ADN , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Ratones Noqueados , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo
4.
FASEB J ; 32(7): 3574-3582, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29475398

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common inherited disorders. ADPKD is caused by mutations in the gene encoding either polycystic kidney disease 1 ( PKD1) or polycystic kidney disease 2 ( PKD2). Patients with ADPKD show progressive growth of cystic fluid-filled renal cysts. Here, we used Pkd2f/f control mice and Pkd2f/f:HoxB7-Cre experimental mice, which are bred to have a conditional deletion of Pkd2 in the collecting ducts, and analyzed the expression pattern of microRNAs (miRNAs) of kidney tissues from Pkd2f/f and Pkd2f/f:HoxB7-Cre mice. Decreased expression of miR-20b-5p and miR-106a-5p in Pkd2f/f:HoxB7-Cre mice compared to that in Pkd2f/f mice was observed. These miRNAs target Klf12 (Krüppel-like factor 12), which has low expression in kidney tissues of Pkd2f/f mice; however, its expression is enhanced in Pkd2f/f:HoxB7-Cre mice over time. Moreover, miR-20b-5p and miR-106a-5p directly target Klf12 mRNA by binding to the 3'-UTR of Klf12. In addition, human and mouse cell lines exhibit similar patterns. These findings were also consistent with the data from Pkd2 knockout mouse embryonic fibroblasts. Furthermore, direct and indirect knockdown of Klf12 slows cyst growth and cell proliferation in mouse inner medullary collecting duct cells. Taken together, we suggest that the induction of miR-20b-5p or miR-106a-5p or the down-regulation of KLF12 could be used as potential novel therapies for inhibiting cyst growth in patients with ADPKD.-Shin, Y., Kim, D. Y., Ko, J. Y., Woo, Y. M., Park, J. H. Regulation of KLF12 by microRNA-20b and microRNA-106a in cystogenesis.


Asunto(s)
Factores de Transcripción de Tipo Kruppel/genética , MicroARNs/genética , Enfermedades Renales Poliquísticas/metabolismo , Células 3T3 , Animales , Células Cultivadas , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , MicroARNs/metabolismo , Enfermedades Renales Poliquísticas/genética
5.
Adv Exp Med Biol ; 1026: 287-313, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29282690

RESUMEN

Breast cancer is one of complex diseases that are influenced by environment. Various genetic and epigenetic alterations are provoking causes of breast carcinogenesis. Dynamic epigenetic regulation including DNA methylation and histone modification induces dysregulation of genes related to proliferation, apoptosis, and metastasis in breast cancer. DNA methylation is strongly associated with the repression of transcription through adding to the methyl group by DNA methyltransferases (DNMTs), and tumor suppressor genes such as CCND2 and RUNX3 have been investigated to undergo hypermethylation at promoter region in breast cancer. In addition, histone deacetylases (HDACs) contribute to transcriptional repression by removing acetyl group at lysine residues leading to tumorigenesis. Since epigenetic changes are reversible, therapeutic approaches have been applied with epigenetic modification drugs such as DNMT inhibitors and HDAC inhibitors. In this chapter, we will summarize the feature of epigenetic markers in breast cancer cells and the effect of single or combination of epigenetic reagents for breast cancer therapy.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Epigénesis Genética , Inhibidores de Histona Desacetilasas/uso terapéutico , Terapia Molecular Dirigida , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Metilación de ADN/efectos de los fármacos , Epigenómica , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos
6.
FASEB J ; 29(8): 3506-14, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25934702

RESUMEN

Autosomal polycystic kidney disease (ADPKD) is a highly prevalent genetic renal disorder in which epithelial-lining fluid-filled cysts appear in kidneys. It is accompanied by hyperactivation of cell proliferation, interstitial inflammation, and fibrosis around the cyst lining cells, finally reaching end-stage renal disease. Previously, we found high expression of ligands stimulating the receptor for advanced glycation end products (RAGE) in ADPKD mice. Furthermore, gene silencing of RAGE was revealed to cause reduction of cystogenesis via down-regulation of cell proliferation in vitro, and intravenous administration of anti-RAGE adenovirus in vivo also displayed alleviation of the disease. Here, we attempted to identify the role of soluble RAGE (sRAGE) in inhibiting the progression of ADPKD using 2 different ADPKD mouse models. sRAGE is an endogenously expressed form of RAGE that has no membrane-anchoring domain, thereby giving it the ability to neutralize the ligands that stimulate RAGE signals. Both overexpression of sRAGE and sRAGE treatment blocked RAGE-mediated cell proliferation in vitro. In addition, sRAGE-injected ADPKD mice showed reduced cysts accompanied by enhanced renal function, inhibition of cell proliferation, inflammation, and fibrosis. These positive therapeutic effects of sRAGE displayed little liver toxicity, suggesting it as a new potential therapeutic target of ADPKD with low side effects.


Asunto(s)
Proliferación Celular/fisiología , Regulación hacia Abajo/fisiología , Fallo Renal Crónico/metabolismo , Fallo Renal Crónico/patología , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/patología , Receptores Inmunológicos/metabolismo , Animales , Línea Celular , Progresión de la Enfermedad , Fibrosis/metabolismo , Fibrosis/patología , Humanos , Inflamación/metabolismo , Inflamación/patología , Riñón/metabolismo , Riñón/patología , Ratones , Receptor para Productos Finales de Glicación Avanzada
7.
Adv Exp Med Biol ; 933: 45-57, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27730434

RESUMEN

The primary cilium is a microtubule-based organelle that is considered to be a cellular antennae, because proteins related to multiple signaling pathways such as Wnt, PDGFRα, Hh, and mechanosignaling are localized to the membrane of the primary cilium. In the kidney, primary cilia extend from the cell membrane to the lumen of renal tubules to respond to fluidic stress. Recent studies have indicated that the disruption of ciliary proteins including polycystin-1 (PC1), polycystin-2 (PC2), and members of the intraflagellar transport (IFT) family induce the development of polycystic kidney disease (PKD), suggesting that the malformation or absence of primary cilia is a driving force of the onset of PKD. Therefore, in this chapter, the renal cystogenesis mechanism induced by cilia defects and pathogenic ciliary proteins associated with PKD development will be described.


Asunto(s)
Riñón Poliquístico Autosómico Dominante/patología , Animales , Cilios/metabolismo , Cilios/patología , Humanos , Transducción de Señal
8.
Adv Exp Med Biol ; 933: 71-84, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27730436

RESUMEN

Various polycystic kidney disease (PKD) animal models including Pkd1- or Pkd2-deficient mice have been developed and efficiently utilized to identify novel therapeutic targets as well as elucidate multiple mechanisms of cyst formation in PKD. Based on several successful in vivo studies, preclinical approaches using PKD animal models would shed light on the development of potential therapeutic strategies for PKD. Here, we provide an update on the current evidence obtained by the in vivo evaluation of PKD therapeutic candidates and discuss the effect of therapeutic targets.


Asunto(s)
Terapia Molecular Dirigida/métodos , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Humanos , Riñón Poliquístico Autosómico Dominante/genética
9.
J Biol Chem ; 288(9): 6488-97, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23316056

RESUMEN

Cilia in ciliated cells consist of protruding structures that sense mechanical and chemical signals from the extracellular environment. Cilia are assembled with variety molecules via a process known as intraflagellar transport (IFT). What controls the length of cilia in ciliated cells is critical to understand ciliary disease such as autosomal dominant polycystic kidney disease, which involves abnormally short cilia. But this control mechanism is not well understood. Previously, multiple tubular cysts have been observed in the kidneys of max-interacting protein 1 (Mxi1)-deficient mice aged 6 months or more. Here, we clarified the relationship between Mxi1 inactivation and cilia disassembly. Cilia phenotypes were observed in kidneys of Mxi1-deficient mice using scanning electron microscopy to elucidate the effect of Mxi1 on renal cilia phenotype, and cilia disassembly was observed in Mxi1-deficient kidney. In addition, genes related to cilia were validated in vitro and in vivo using quantitative PCR, and Ift20 was selected as a candidate gene in this study. The length of cilium decreased, and p-ERK level induced by a cilia defect increased in kidneys of Mxi1-deficient mice. Ciliogenesis of Mxi1-deficient mouse embryonic fibroblasts (MEFs) decreased, and this abnormality was restored by Mxi1 transfection in Mxi1-deficient MEFs. We confirmed that ciliogenesis and Ift20 expression were regulated by Mxi1 in vitro. We also determined that Mxi1 regulates Ift20 promoter activity via Ets-1 binding to the Ift20 promoter. These results indicate that inactivating Mxi1 induces ciliary defects in polycystic kidney.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Portadoras/biosíntesis , Riñón/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas Portadoras/genética , Células Cultivadas , Cilios/metabolismo , Cilios/ultraestructura , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/ultraestructura , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Regulación de la Expresión Génica/genética , Riñón/ultraestructura , Ratones , Ratones Mutantes , Microscopía Electrónica de Rastreo , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Reacción en Cadena de la Polimerasa , Proteína Proto-Oncogénica c-ets-1/genética , Proteína Proto-Oncogénica c-ets-1/metabolismo , Elementos de Respuesta/genética , Proteínas Supresoras de Tumor/genética
10.
Invest Ophthalmol Vis Sci ; 65(3): 30, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38517430

RESUMEN

Purpose: Intraflagellar transport 46 (IFT46) is an integral subunit of the IFT-B complex, playing a key role in the assembly and maintenance of primary cilia responsible for transducing signaling pathways. Despite its predominant expression in the basal body of cilia, the precise role of Ift46 in ocular development remains undetermined. This study aimed to elucidate the impact of neural crest (NC)-specific deletion of Ift46 on ocular development. Methods: NC-specific conditional knockout mice for Ift46 (NC-Ift46F/F) were generated by crossing Ift46F mice with Wnt1-Cre2 mice, enabling the specific deletion of Ift46 in NC-derived cells (NCCs). Sonic Hedgehog (Shh) and Notch signaling activities in NC-Ift46F/F mice were evaluated using Gli1lacZ and CBF:H2B-Venus reporter mice, respectively. Cell fate mapping was conducted using ROSAmTmG reporter mice. Results: The deletion of Ift46 in NCCs resulted in a spectrum of ocular abnormalities, including thickened corneal stroma, hypoplasia of the anterior chamber, irregular iris morphology, and corneal neovascularization. Notably, this deletion led to reduced Shh signal activity in the periocular mesenchyme, sustained expression of key transcription factors Foxc1, Foxc2 and Pitx2, along with persistent cell proliferation. Additionally, it induced increased Notch signaling activity and the development of ectopic neovascularization within the corneal stroma. Conclusions: The absence of primary cilia due to Ift46 deficiency in NCCs is associated with anterior segment dysgenesis (ASD) and corneal neovascularization, suggesting a potential link to Axenfeld-Rieger syndrome, a disorder characterized by ASD. This underscores the pivotal role of primary cilia in ensuring proper anterior segment development and maintaining an avascular cornea.


Asunto(s)
Cilios , Neovascularización de la Córnea , Anomalías del Ojo , Ratones , Animales , Cilios/metabolismo , Cresta Neural/metabolismo , Neovascularización de la Córnea/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Córnea , Ratones Noqueados , Proteínas del Citoesqueleto/metabolismo
11.
Cancers (Basel) ; 16(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38730618

RESUMEN

Dysregulated DNA methylation in cancer is critical in the transcription machinery associated with cancer progression. Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, but no treatment targeting TNBC biomarkers has yet been developed. To identify specific DNA methylation patterns in TNBC, methyl-binding domain protein 2 (MBD) sequencing data were compared in TNBC and the three other major breast cancer subtypes. Integrated analysis of DNA methylation and gene expression identified a gene set showing a correlation between DNA methylation and gene expression. ATPase Na+/K+-transporting subunit alpha 1 (ATP1A1) was found to be specifically hypomethylated in the coding sequence (CDS) region and to show increased expression in TNBC. The Cancer Genome Atlas (TCGA) database also showed that hypomethylation and high expression of ATP1A1 were strongly associated with poor survival in patients with TNBC. Furthermore, ATP1A1 knockdown significantly reduced the viability and tumor-sphere formation of TNBC cells. These results suggest that the hypomethylation and overexpression of ATP1A1 could be a prognostic marker in TNBC and that the manipulation of ATP1A1 expression could be a therapeutic target in this disease.

12.
Clin Mol Hepatol ; 30(2): 247-262, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38281815

RESUMEN

BACKGROUND/AIMS: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by fat accumulation in the liver. MASLD encompasses both steatosis and MASH. Since MASH can lead to cirrhosis and liver cancer, steatosis and MASH must be distinguished during patient treatment. Here, we investigate the genomes, epigenomes, and transcriptomes of MASLD patients to identify signature gene set for more accurate tracking of MASLD progression. METHODS: Biopsy-tissue and blood samples from patients with 134 MASLD, comprising 60 steatosis and 74 MASH patients were performed omics analysis. SVM learning algorithm were used to calculate most predictive features. Linear regression was applied to find signature gene set that distinguish the stage of MASLD and to validate their application into independent cohort of MASLD. RESULTS: After performing WGS, WES, WGBS, and total RNA-seq on 134 biopsy samples from confirmed MASLD patients, we provided 1,955 MASLD-associated features, out of 3,176 somatic variant callings, 58 DMRs, and 1,393 DEGs that track MASLD progression. Then, we used a SVM learning algorithm to analyze the data and select the most predictive features. Using linear regression, we identified a signature gene set capable of differentiating the various stages of MASLD and verified it in different independent cohorts of MASLD and a liver cancer cohort. CONCLUSION: We identified a signature gene set (i.e., CAPG, HYAL3, WIPI1, TREM2, SPP1, and RNASE6) with strong potential as a panel of diagnostic genes of MASLD-associated disease.


Asunto(s)
Hígado Graso , Neoplasias Hepáticas , Humanos , Algoritmos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Progresión de la Enfermedad
13.
BMB Rep ; 56(7): 374-384, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37357534

RESUMEN

Fibrosis is a pathological condition that is characterized by an abnormal buildup of extracellular matrix (ECM) components, such as collagen, in tissues. This condition affects various organs of the body, including the liver and kidney. Early diagnosis and treatment of fibrosis are crucial, as it is a progressive and irreversible process in both organs. While there are certain similarities in the fibrosis process between the liver and kidney, there are also significant differences that must be identified to determine molecular diagnostic markers and potential therapeutic targets. Long non-coding RNAs (lncRNAs), a class of RNA molecules that do not code for proteins, are increasingly recognized as playing significant roles in gene expression regulation. Emerging evidence suggests that specific lncRNAs are involved in fibrosis development and progression by modulating signaling pathways, such as the TGF-ß/Smad pathway and the ß-catenin pathway. Thus, identifying the precise lncRNAs involved in fibrosis could lead to novel therapeutic approaches for fibrotic diseases. In this review, we summarize lncRNAs related to fibrosis in the liver and kidney, and propose their potential as therapeutic targets based on their functions. [BMB Reports 2023; 56(7): 374-384].


Asunto(s)
ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Riñón/metabolismo , Fibrosis , Hígado/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Biomarcadores
14.
Biochem Biophys Res Commun ; 419(3): 459-65, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22342670

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease. ADPKD is characterized by cyst development that leads to abnormal kidney structure. Renal tubules are a fundamental unit of architecture, so controls of tubular growth and formation are important for proper kidney function. The molecular mechanisms of tubulogenesis are being actively studied as the basis of diagnosis and treatment of ADPKD. Mxi1 is a member of the MAD family of proteins that functions in terminal differentiation, inhibition of cell cycle progression and tumor suppression, while the Myc protein, which is antagonized by Mxi1, causes renal cystogenesis. Based on these molecular relationships, the present study implicated Mxi1 with ADPKD be demonstrating that curtailed Mxi1 gene expression caused cyst formation in Mxi1-deficient mice. To ascertain whether Mxi1 affects renal epithelial cell tubulogenesis, three-dimensional cultures (3D culture) of mIMCD-3 cells and stably Mxi1 over-expressed mIMCD-3 cells were established. The results indicated that over-expression of the Mxi1 gene plays a role in the regulation of tubulogenesis by regulating some genes participating in renal epithelial branching tubulogenesis such as matrix metalloproteinase 9 (MMP9), integrins, fibronectin, and E-cadherin. The results support the suggestion that over-expression of Mxi1 can suppress renal epithelial tubulogenesis. In particular, MMP9 is greatly affected by the expression level of Mxi1. It can be concluded that mIMCD-3 cells that stably over-express Mxi1 fail to form renal epithelial tubules because of abnormally reduced expression of MMP9.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Células Epiteliales/fisiología , Regulación del Desarrollo de la Expresión Génica , Túbulos Renales/crecimiento & desarrollo , Inhibidores de la Metaloproteinasa de la Matriz , Organogénesis/genética , Proteínas Supresoras de Tumor/biosíntesis , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Técnicas de Cultivo de Célula , Línea Celular , Células Epiteliales/metabolismo , Silenciador del Gen , Túbulos Renales/citología , Túbulos Renales/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Ratones , Proteínas Supresoras de Tumor/genética
15.
Exp Mol Med ; 54(2): 169-179, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35177808

RESUMEN

Renal primary cilia are antenna-like organelles that maintain cellular homeostasis via multiple receptors clustered along their membranes. Recent studies have revealed that YAP/TAZ, key paralogous effectors of the Hippo pathway, are involved in ciliogenesis; however, their independent roles need to be further investigated. Here, we analyzed the renal phenotypes of kidney-specific TAZ knockout mice and observed ciliary defects only in glomeruli where mild cysts were formed. This finding prompted us to verify the role of TAZ specifically in renal tubule ciliary regulation. Therefore, we investigated the effects of TAZ silencing and compared them to those of YAP knockdown using three different types of renal tubular cells. We found that the absence of TAZ prevented proper cilia formation in glomerular cells, whereas it had a negligible effect in collecting duct and proximal tubule cells. IFT and NPHP protein levels were altered because of TAZ deficiency, accompanied by ciliary defects in glomerular cells, and ciliary recovery was identified by regulating some NPHP proteins. Although our study focused on TAZ, ciliogenesis, and other ciliary genes, the results suggest the very distinct roles of YAP and TAZ in kidneys, specifically in terms of ciliary regulation.


Asunto(s)
Cilios , Proteínas Señalizadoras YAP , Animales , Cilios/metabolismo , Riñón , Túbulos Renales , Ratones , Ratones Noqueados
16.
Mol Oncol ; 16(9): 1857-1875, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35029026

RESUMEN

Autophagy has a dual role in the maintenance of cancer stem cells (CSCs), but the precise relationship between autophagy and cancer stemness requires further investigation. In this study, it was found that luminal and triple-negative breast cancers require distinct therapeutic approaches because of their different amounts of autophagy flux. We identified that autophagy flux was inhibited in triple-negative breast cancer (TNBC) CSCs. Moreover, miRNA-181a (miR-181a) expression is upregulated in both TNBC CSCs and patient tissues. Autophagy-related 5 (ATG5) and autophagy-related 2B (ATG2B) participate in the early formation of autophagosomes and were revealed as targets of miR-181a. Inhibition of miR-181a expression led to attenuation of TNBC stemness and an increase in autophagy flux. Furthermore, treatment with curcumin led to attenuation of cancer stemness in TNBC CSCs; the expression of ATG5 and ATG2B was enhanced and there was an increase of autophagy flux. These results indicated that ATG5 and ATG2B are involved in the suppression of cancer stemness in TNBC. In summary, autophagy inhibits cancer stemness through the miR-181a-regulated mechanism in TNBC. Promoting tumor-suppressive autophagy using curcumin may be a potential method for the treatment of TNBC.


Asunto(s)
Curcumina , MicroARNs , Neoplasias de la Mama Triple Negativas , Autofagia/genética , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Línea Celular Tumoral , Curcumina/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Proteínas de Transporte Vesicular/metabolismo
17.
Oncogene ; 41(22): 3151-3161, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35490208

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer; however, specific prognostic biomarkers have not yet been developed. In this study, we identified dysregulated microRNAs (miRNAs) in TNBC by profiling miRNA and mRNA expression. In patients with TNBC, miR-371b-5p expression was reduced, and miR-371b-5p overexpression significantly mitigated TNBC cell growth, migration, and invasion. In addition, we found that expression of cold shock domain-containing protein E1 (CSDE1), a direct target gene of miR-371b-5p, was upregulated in TNBC cells, and inhibition of CSDE1 expression alleviated TNBC cell growth by regulating RAC1 transcription. Mechanistically, CSDE1, phosphorylated C-terminal domain (p-CTD) of RNA polymerase II (RNAPII), and CDK7 form a complex, and downregulation of CSDE1 leads to weak interaction between RNAPII p-CTD and CDK7, resulting in a decrease in RNAPII p-CTD expression to reduce RAC1 transcript levels in CSDE1-deficient TNBC cells. Our data demonstrate that miR-371b-5p is a tumor-suppressive miRNA that regulates the CSDE1/Rac1 axis and could be a potential prognostic biomarker for TNBC.


Asunto(s)
Proteínas de Unión al ADN , MicroARNs , Proteínas de Unión al ARN , Neoplasias de la Mama Triple Negativas , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Invasividad Neoplásica/genética , Proteínas de Unión al ARN/genética , Neoplasias de la Mama Triple Negativas/patología , Proteína de Unión al GTP rac1/genética
18.
Biochem Biophys Res Commun ; 415(1): 36-41, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-22008548

RESUMEN

Mxi1, a member of the Myc-Max-Mad network, is an antagonist of the c-Myc oncogene and is associated with excessive cell proliferation. Abnormal cell proliferation and tumorigenesis are observed in organs of Mxi1-/- mice. However, the Mxi1-reltaed mechanism of proliferation is unclear. The present study utilized microarray analysis using Mxi1 mouse embryonic fibroblasts (MEFs) to identify genes associated with cell proliferation. Among these genes, insulin-like growth factor binding protein-3 (IGFBP-3) was selected as a candidate gene for real-time PCR to ascertain whether IGFBP-3 expression is regulated by Mxi1. Expression of IGFBP-3 was decreased in Mxi1-/- MEFs and Mxi1-/- mice, and the gene was regulated by Mxi1 in Mxi1 MEFs. Furthermore, proliferation pathways related to IGFBP-3 were regulated in Mxi1-/- mice compared to Mxi1+/+ mice. To determine the effect of Mxi1 inactivation on the induction of cell proliferation, a proliferation assay is performed in both Mxi1 MEFs and Mxi1 mice. Cell viability was regulated by Mxi1 in Mxi1 MEFs and number of PCNA-positive cells was increased in Mxi1-/- mice compared to Mxi1+/+ mice. Moreover, the IGFBP-3 level was decreased in proliferation defect regions in Mxi1-/- mice. The results support the suggestion that inactivation of Mxi1 has a positive effect on cell proliferation by down-regulating IGFBP-3.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proliferación Celular , Regulación de la Expresión Génica , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteínas Supresoras de Tumor/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Mutantes , Proteínas Supresoras de Tumor/genética
19.
Cancers (Basel) ; 13(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202157

RESUMEN

After decades-long efforts to diagnose and treat breast cancer, the management strategy that has proved most successful to date is molecular-subtype-specific inhibition of the hormone receptors and HER2 that are expressed by individual cancers. Melanoma-associated antigen (MAGE) proteins comprise >40 highly conserved members that contain the MAGE homology domain. They are often overexpressed in multiple cancers and contribute to cancer progression and metastasis. However, it remains unclear whether the biological activity arising from MAGE gene expression is associated with breast cancer subtypes. In this study, we analyzed the RNA-sequencing (RNA-seq) data of 70 breast cancer cell lines and found that MAGEA12 and MAGEA3 were highly expressed in a subset of these lines. Significantly, MAGEA12 and MAGEA3 expression levels were independent of hormone receptor expression levels but were closely associated with markers of active histone modifications. This indicates that overexpression of these genes is attributable to epigenetic deregulation. RNA-seq of MAGEA12-depleted cells was then used to identify 382 candidate targets of MAGEA12 that were downregulated by MAGEA12 depletion. Furthermore, our gain-of-function experiments showed that MAGEA12 overexpression promoted aggressive behaviors of malignant breast cancer cells, including enhancing their cell migration and invasion. These changes were associated with increased epigenetic deregulation of the MAGEA12 signature genes. Thus, MAGEA12 may play an important role in breast cancer malignancy. Taken together, our findings suggest that MAGEA12 could be a promising therapeutic target in breast cancer, and its overexpression and epigenetic changes could serve as subtype classification biomarkers.

20.
EBioMedicine ; 60: 102986, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32949996

RESUMEN

BACKGROUND: Polycystic kidney disease (PKD) involves renal cysts arising from proliferating tubular cells. Autophagy has been recently suggested as a potential therapeutic target in PKD, and mammalian target of rapamycin (mTOR) is a key negative regulator of autophagy. However, the effect of autophagy regulation on cystogenesis has not been elucidated in PKD mice. METHODS: Clinical validation was performed using GEO datasets and autosomal dominant polycystic kidney disease (ADPKD) patient samples. Newly established PKD and LC3 transgenic mice were used for in vivo verifications, and additional tests were performed in vitro and in vivo using multiple autophagy drugs. FINDINGS: Neither autophagy stimulation nor LC3 overexpression alleviated PKD. Furthermore, we observed the inhibitory effect of an autophagy inhibitor on cysts, indicating its possible therapeutic use in a specific group of patients with ADPKD. INTERPRETATION: Our findings provide a novel insight into the pathogenesis related to autophagy in PKD, suggesting that drugs related to autophagy regulation should be considered with caution for treating PKD. FUNDING SOURCES: This work was supported by grants from the Bio & Medical Technology Development Program; the Collaborative Genome Program for Fostering New Post-Genome Industry of the NRF; the Basic Science Program.


Asunto(s)
Autofagia , Quistes/patología , Enfermedades Renales Poliquísticas/etiología , Enfermedades Renales Poliquísticas/patología , Animales , Autofagia/genética , Línea Celular , Biología Computacional , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Ratones , Ratones Transgénicos , Fosforilación , Enfermedades Renales Poliquísticas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA