Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 37(5): e22842, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37000501

RESUMEN

Joint contracture causes distressing permanent mobility disorder due to trauma, arthritis, and aging, with no effective treatment available. A principal and irreversible cause of joint contracture has been regarded as the development of joint capsule fibrosis. However, the molecular mechanisms underlying contracture remain unclear. We established a mouse model of knee joint contracture, revealing that fibrosis in joint capsules causes irreversible contracture. RNA-sequencing of contracture capsules demonstrated a marked enrichment of the genes involved in the extracellular region, particularly periostin (Postn). Three-dimensional magnetic resonance imaging and immunohistological analysis of contracture patients revealed posterior joint capsule thickening with abundant type I collagen (Col1a2) and POSTN in humans. Col1a2-GFPTG ; Postn-/- mice and chimeric mice with Col1a2-GFPTG ; tdTomatoTG bone marrow showed fibrosis in joint capsules caused by bone marrow-derived fibroblasts, and POSTN promoted the migration of bone marrow-derived fibroblasts, contributing to fibrosis and contracture. Conversely, POSTN-neutralizing antibody attenuated contracture exacerbation. Our findings identified POSTN as a key inducer of fibroblast migration that exacerbates capsule fibrosis, providing a potential therapeutic strategy for joint contracture.


Asunto(s)
Médula Ósea , Contractura , Humanos , Ratones , Animales , Médula Ósea/patología , Rango del Movimiento Articular , Contractura/genética , Contractura/tratamiento farmacológico , Fibrosis , Fibroblastos/patología
2.
Spinal Cord ; 58(3): 284-289, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31619753

RESUMEN

STUDY DESIGN: Retrospective chart audits. OBJECTIVE: To investigate the optimal timing at which permanent complete cervical spinal cord injury (CSCI) can be confirmed when evaluating paralysis caused by traumatic CSCI. SETTING: Department of Orthopedic Surgery, Spinal Injuries Center, Japan. METHODS: Two-hundred and three patients with CSCI that was classified with an American Spinal Injury Association (ASIA) Impairment Scale (AIS) grade A (AIS A) within 72 h of the initial diagnosis of traumatic CSCI were included in the present study. Neurological data from the time of the initial diagnosis to 1 year after the injury were extracted. The number of those with recovery from AIS A and changes of AIS in the recovery were examined. RESULTS: Thirty-five of 203 (17%) patients whose injuries were initially classified with an AIS A showed recovery from AIS A. Thirty-four of 35 (97%) patients showed recovery from AIS A within 8 weeks after injury. CONCLUSION: If CSCI patients with AIS A have not recovered by 8 weeks, the likelihood that they will recover from AIS A is marginal. However, this conversely means that we must consider the possibility that a patient with a traumatic CSCI classified with an AIS A may still show recovery from AIS A within the first 8 weeks after injury.


Asunto(s)
Médula Cervical/lesiones , Traumatismos de la Médula Espinal/diagnóstico , Traumatismos de la Médula Espinal/rehabilitación , Adolescente , Adulto , Anciano , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Tiempo , Adulto Joven
3.
Am J Pathol ; 187(3): 639-653, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28082119

RESUMEN

Scar formation is a prominent pathological feature of traumatic central nervous system (CNS) injury, which has long been implicated as a major impediment to the CNS regeneration. However, the factors affecting such scar formation remain to be elucidated. We herein demonstrate that the extracellular matrix protein periostin (POSTN) is a key player in scar formation after traumatic spinal cord injury (SCI). Using high-throughput RNA sequencing data sets, we found that the genes involved in the extracellular region, such as POSTN, were significantly expressed in the injured spinal cord. The expression of POSTN peaked at 7 days after SCI, predominantly in the scar-forming pericytes. Notably, we found that genetic deletion of POSTN in mice reduced scar formation at the lesion site by suppressing the proliferation of the pericytes. Conversely, we found that recombinant POSTN promoted the migration capacity of the monocytes/macrophages and increased the expression of tumor necrosis factor-α from the monocytes/macrophages in vitro, which facilitated the proliferation of pericytes. Furthermore, we revealed that the pharmacological blockade of POSTN suppressed scar formation and improved the long-term functional outcome after SCI. Our findings suggest a potential mechanism whereby POSTN regulates the scar formation after SCI and provide significant evidence that POSTN is a promising therapeutic target for CNS injury.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Cicatriz/patología , Macrófagos/patología , Monocitos/patología , Pericitos/patología , Traumatismos de la Médula Espinal/patología , Animales , Anticuerpos Neutralizantes/farmacología , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Moléculas de Adhesión Celular/deficiencia , Moléculas de Adhesión Celular/genética , Proliferación Celular/efectos de los fármacos , Femenino , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/efectos de los fármacos , Regeneración Nerviosa/efectos de los fármacos , Pericitos/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/fisiopatología , Factor de Necrosis Tumoral alfa/farmacología
4.
Am J Pathol ; 187(12): 2831-2840, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28935572

RESUMEN

Ligamentum flavum (LF) hypertrophy causes lumbar spinal canal stenosis, leading to leg pain and disability in activities of daily living in elderly individuals. Although previous studies have been performed on LF hypertrophy, its pathomechanisms have not been fully elucidated. In this study, we demonstrated that infiltrating macrophages were a causative factor for LF hypertrophy. Induction of macrophages into the mouse LF by applying a microinjury resulted in LF hypertrophy along with collagen accumulation and fibroblasts proliferation at the injured site, which were very similar to the characteristics observed in the severely hypertrophied LF of human. However, we found that macrophage depletion by injecting clodronate-containing liposomes counteracted LF hypertrophy even with microinjury. For identification of fibroblasts in the LF, we used collagen type I α2 linked to green fluorescent protein transgenic mice and selectively isolated green fluorescent protein-positive fibroblasts from the microinjured LF using laser microdissection. A quantitative RT-PCR on laser microdissection samples revealed that the gene expression of collagen markedly increased in the fibroblasts at the injured site with infiltrating macrophages compared with the uninjured location. These results suggested that macrophage infiltration was crucial for LF hypertrophy by stimulating collagen production in fibroblasts, providing better understanding of the pathophysiology of LF hypertrophy.


Asunto(s)
Colágeno/biosíntesis , Fibroblastos/metabolismo , Ligamento Amarillo/patología , Macrófagos/metabolismo , Estenosis Espinal/patología , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Hipertrofia/metabolismo , Hipertrofia/patología , Región Lumbosacra , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Estenosis Espinal/metabolismo
5.
Stem Cells ; 31(8): 1535-47, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23606608

RESUMEN

The transplantation of neural stem/precursor cells (NSPCs) is a promising therapeutic strategy for many neurodegenerative disorders including spinal cord injury (SCI) because it provides for neural replacement or trophic support. This strategy is now being extended to the treatment of chronic SCI patients. However, understanding of biological properties of chronically transplanted NSPCs and their surrounding environments is limited. Here, we performed temporal analysis of injured spinal cords and demonstrated their multiphasic cellular and molecular responses. In particular, chronically injured spinal cords were growth factor-enriched environments, whereas acutely injured spinal cords were enriched by neurotrophic and inflammatory factors. To determine how these environmental differences affect engrafted cells, NSPCs transplanted into acutely, subacutely, and chronically injured spinal cords were selectively isolated by flow cytometry, and their whole transcriptomes were compared by RNA sequencing. This analysis revealed that NSPCs produced many regenerative/neurotrophic molecules irrespective of transplantation timing, and these activities were prominent in chronically transplanted NSPCs. Furthermore, chronically injured spinal cords permitted engrafted NSPCs to differentiate into neurons/oligodendrocytes and provided more neurogenic environment for NSPCs than other environments. Despite these results demonstrate that transplanted NSPCs have adequate capacity in generating neurons/oligodendrocytes and producing therapeutic molecules in chronic SCI microenvironments, they did not improve locomotor function. Our results indicate that failure in chronic transplantation is not due to the lack of therapeutic activities of engrafted NSPCs but the refractory state of chronically injured spinal cords. Environmental modulation, rather modification of transplanting cells, will be significant for successful translation of stem cell-based therapies into chronic SCI patients.


Asunto(s)
Células-Madre Neurales/citología , Células-Madre Neurales/trasplante , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/cirugía , Médula Espinal/patología , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Enfermedad Crónica , Femenino , Ratones , Ratones Endogámicos C57BL , Neurogénesis/fisiología
6.
Heliyon ; 10(3): e25180, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38333806

RESUMEN

Background: Spinal metastases can impair mobility, worsening the Karnofsky Performance Status (KPS). Surgery for spinal metastases has the potential to improve KPS and extend prognosis, but it is crucial to recognize the elevated risk of perioperative complications. Therefore, the development of a new scoring system to accurately predict perioperative complications in spinal metastatic surgery is essential. Methods: We conducted a retrospective observational study with 86 patients who underwent surgical intervention for spinal metastases. Patients were divided into two groups based on the presence or absence of perioperative complications within 14 days after surgery. Various factors related to perioperative complications were assessed through univariate and multivariate analyses. We established a clinical prognostic scoring system called the Perioperative Complications following Metastatic Spinal Surgery (PERCOM) score and evaluated its precision using receiver operating characteristic (ROC) analysis. Results: Five variables (age, KPS, primary prostate cancer, Albumin, and Hemoglobin) identified in the univariate analysis were assigned binary values of 0 or 1. The PERCOM score was then calculated for each patient by summing the individual points, ranging from 0 to 5. The optimal threshold determined by ROC curve analysis for the PERCOM score was 2 points, with a sensitivity of 86 % and a specificity of 56 %. Conclusions: The composite PERCOM score effectively predicted perioperative complications in spinal metastasis surgery. To further validate its precision, a prospective multicenter study is needed.

7.
J Clin Med ; 13(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38202260

RESUMEN

BACKGROUND: In patients with cervical spinal cord injury (SCI), we need to make accurate prognostic predictions in the acute phase for more effective rehabilitation. We hypothesized that a multivariate prognosis would be useful for patients with cervical SCI. METHODS: We made two predictive models using Multiple Linear Regression (MLR) and Artificial Neural Networks (ANNs). We adopted MLR as a conventional predictive model. Both models were created using the same 20 clinical parameters of the acute phase data at the time of admission. The prediction results were classified by the ASIA Impairment Scale. The training data consisted of 60 cases, and prognosis prediction was performed for 20 future cases (test cohort). All patients were treated in the Spinal Injuries Center (SIC) in Fukuoka, Japan. RESULTS: A total of 16 out of 20 cases were predictable. The correct answer rate of MLR was 31.3%, while the rate of ANNs was 75.0% (number of correct answers: 12). CONCLUSION: We were able to predict the prognosis of patients with cervical SCI from acute clinical data using ANNs. Performing effective rehabilitation based on this prediction will improve the patient's quality of life after discharge. Although there is room for improvement, ANNs are useful as a prognostic tool for patients with cervical SCI.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38857372

RESUMEN

STUDY DESIGN: Multicenter, prospective registry study. OBJECTIVE: To clarify minimal clinically important differences (MCIDs) for surgical interventions for spinal metastases, thereby enhancing patient care by integrating quality of life (QoL) assessments with clinical outcomes. SUMMARY OF BACKGROUND DATA: Despite its proven usefulness in degenerative spinal diseases and deformities, the MCID remains unexplored regarding surgery for spinal metastases. METHODS: This study included 171 (out of 413) patients from the multicenter "Prospective Registration Study on Surgery for Metastatic Spinal Tumors" by the Japan Association of Spine Surgeons. These were evaluated preoperatively and at 6 months postoperatively using the Face scale, EuroQol-5 Dimensions-5 Levels (EQ-5D-5L), including the visual analog scale (VAS), and performance status. The MCIDs were calculated using an anchor-based method, classifying participants into the improved, unchanged, and deteriorated groups based on the Face scale scores. Focusing on the improved and unchanged groups, the change in the EQ-5D-5L values from before to after treatment was analyzed, and the cutoff value with the highest sensitivity and specificity was determined as the MCID through receiver operating characteristic curve analysis. The validity of the MCIDs was evaluated using a distribution-based calculation method for patient-reported outcomes. RESULTS: The improved, unchanged, and deteriorated groups comprised 121, 28, and 22 participants, respectively. The anchor-based MCIDs for the EQ-5D-5L index, EQ-VAS, and domains of mobility, self-care, usual activities, pain/discomfort, and anxiety/depression were 0.21, 15.50, 1.50, 0.50, 0.50, 0.50, and 0.50, respectively; the corresponding distribution-based MCIDs were 0.17, 15,99, 0.77, 0.80, 0.78, 0.60, and 0.70, respectively. CONCLUSION: We identified MCIDs for surgical treatment of spinal metastases, providing benchmarks for future clinical research. By retrospectively examining whether the MCIDs are achieved, factors favoring their achievement and risks affecting them can be explored. This could aid in decisions on surgical candidacy and patient counseling.

9.
J Neurochem ; 125(1): 74-88, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23278273

RESUMEN

Acute inflammation is a prominent feature of central nervous system (CNS) insult and is detrimental to the CNS tissue. Although this reaction spontaneously diminishes within a short period of time, the mechanism underlying this inflammatory resolution remains largely unknown. In this study, we demonstrated that an initial infiltration of Ly6C(+) Ly6G(-) immature monocyte fraction exhibited the same characteristics as myeloid-derived suppressor cells (MDSCs), and played a critical role in the resolution of acute inflammation and in the subsequent tissue repair by using mice spinal cord injury (SCI) model. Complete depletion of Ly6C(+) Ly6G(-) fraction prior to injury by anti-Gr-1 antibody (clone: RB6-8C5) treatment significantly exacerbated tissue edema, vessel permeability, and hemorrhage, causing impaired neurological outcomes. Functional recovery was barely impaired when infiltration was allowed for the initial 24 h after injury, suggesting that MDSC infiltration at an early phase is critical to improve the neurological outcome. Moreover, intraspinal transplantation of ex vivo-generated MDSCs at sites of SCI significantly reduced inflammation and promoted tissue regeneration, resulting in better functional recovery. Our findings reveal the crucial role of an Ly6C(+) Ly6G(-) fraction as MDSCs in regulating inflammation and tissue repair after SCI, and also suggests an MDSC-based strategy that can be applied to acute inflammatory diseases.


Asunto(s)
Antígenos Ly/metabolismo , Células Mieloides/patología , Traumatismos de la Médula Espinal/metabolismo , Animales , Anticuerpos/farmacología , Femenino , Granulocitos/metabolismo , Granulocitos/patología , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Monocitos/patología , Células Mieloides/metabolismo , Células Mieloides/trasplante , Neovascularización Fisiológica , Receptores de Quimiocina/inmunología , Médula Espinal/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología
10.
Global Spine J ; : 21925682231220893, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38065093

RESUMEN

STUDY DESIGN: Retrospective study. OBJECTIVE: To investigate the characteristics of newly developing Modic changes following discectomy and their impact on residual low back pain (LBP) in the early postoperative stage of lumbar disc herniation. METHODS: We included 96 patients who underwent microscopic discectomy. Through MRI, we assessed new developments of Modic changes and the progression of disc degeneration at the surgical level. The presence of cartilaginous endplates was evaluated using resected specimens, and the main outcome was assessed using the visual analog scale (VAS). Further, the prevalence and time course of Modic changes, and their effects on clinical outcomes in the early postoperative period were examined. RESULTS: A new development of Modic changes was detected in 28% of cartilaginous herniations at 6 months. Modic changes were observed more frequently in patients with cartilaginous herniation than in those without cartilaginous herniation postoperatively (P < .001). The VAS scores for LBP up to 6 months were greater in patients with Modic changes (P < .001) than those without; however, no significant differences were identified in the presence or absence of Modic changes over the year follow-up. The development of Modic changes was closely associated with residual LBP at 6 months (ß:0.511, P < .001). CONCLUSIONS: Modic changes develop predominantly in patients with avulsion-type herniation than in those with annular rupture at an earlier phase after discectomy. Furthermore, disc herniation with cartilaginous endplates may be associated with a slower decrease in LBP for up to 6 months, supporting the notion that newly developing endplate changes may cause residual LBP.

11.
J Spinal Cord Med ; 46(3): 494-500, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-33830904

RESUMEN

Objective: To investigate the usefulness of the combination of neurological findings and magnetic resonance imaging (MRI) as a prognostic predictor in patients with motor complete cervical spinal cord injury (CSCI) in the acute phase.Design: A cross-sectional analysisSetting: Department of Orthopaedic Surgery, Spinal Injuries CenterParticipants/Methods: Forty-two patients with an initial diagnosis of motor complete CSCI (AIS A, n = 29; AIS B, n = 13) within 72 h after injury were classified into the recovery group (Group R) and the non-recovery group (Group N), based on the presence or absence of motor recovery (conversion from AIS A/B to C/D) at three months after injury, respectively. The Neurological Level of Injury (NLI) at the initial diagnosis was investigated and the presumptive primary injured segment of the spinal cord was inferred from MRI performed at the initial diagnosis. We investigated whether or not the difference between the presumptive primary injured segment and the NLI exceeded one segment. The presence of a difference between the presumptive primary injured segment and the NLI was compared between Groups R and N.Results: The number of cases with the differences between the presumptive primary injured segment and the NLI was significantly higher in Group N than in Group R.Conclusion: The presence of differences between the presumptive primary injured segment and the NLI might be a poor improving prognostic predictor for motor complete CSCI. The NLI may be useful for predicting the recovery potential of patients with motor complete CSCI when combined with the MRI findings.


Asunto(s)
Médula Cervical , Traumatismos del Cuello , Traumatismos de la Médula Espinal , Humanos , Pronóstico , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/diagnóstico por imagen , Médula Cervical/lesiones , Estudios Transversales , Estudios Retrospectivos , Vértebras Cervicales/lesiones
12.
J Spinal Cord Med ; 46(5): 725-731, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-35108170

RESUMEN

OBJECTIVES: To elucidate the incidence and risk factors for pneumonia after acute traumatic cervical spinal cord injury (CSCI). DESIGN: Retrospective cohort study.Setting: Spinal injuries center in Japan.Participants: Of 184 individuals who were admitted within 2 weeks after acute traumatic cervical spinal injuries, 167 individuals who met the criteria were included in this study.Interventions: The occurrence of pneumonia, degree of dysphagia using the Dysphagia Severity Scale, patient age, history of smoking, presence of tracheostomy, vital capacity, level of injury, and the American Spinal Injury Association Impairment Scale (AIS) 2 weeks after injury were assessed.Outcomes: Incidence of pneumonia were analyzed. Moreover, the risk factors of pneumonia were evaluated using logistic regression analysis. RESULTS: From the 167 individuals who met the criteria, 30 individuals (18%) had pneumonia; in 26 (87%) of these individuals, pneumonia was aspiration related, defined as Dysphagia Severity Scale ≤ 4. The median occurrence of aspiration pneumonia was 11.5 days after injury. A logistic regression analysis revealed that severe AIS and severe Dysphagia Severity Scale scores were significant risk factors of pneumonia after CSCI. CONCLUSIONS: It was highly likely that the pneumonias following CSCI were related to aspiration based on the Dysphagia Severity Scale. In addition, most of the patients developed aspiration pneumonia within 1 month after injury. Aspiration and severe paralysis were significant risk factors for pneumonia. The treatment of dysphagia in the acute phase should be considered an important indicator to prevent pneumonia.


Asunto(s)
Médula Cervical , Trastornos de Deglución , Traumatismos del Cuello , Neumonía por Aspiración , Neumonía , Traumatismos de la Médula Espinal , Traumatismos Vertebrales , Humanos , Recién Nacido , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/epidemiología , Estudios Retrospectivos , Incidencia , Trastornos de Deglución/epidemiología , Trastornos de Deglución/etiología , Médula Cervical/lesiones , Vértebras Cervicales/lesiones , Neumonía/epidemiología , Neumonía/etiología , Traumatismos del Cuello/complicaciones , Factores de Riesgo , Neumonía por Aspiración/complicaciones
13.
Cell Death Discov ; 9(1): 436, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040717

RESUMEN

In osteoclastogenesis, the metabolism of metal ions plays an essential role in controlling reactive oxygen species (ROS) production, mitochondrial biogenesis, and survival, and differentiation. However, the mechanism regulating metal ions during osteoclast differentiation remains unclear. The metal-binding protein metallothionein (MT) detoxifies heavy metals, maintains metal ion homeostasis, especially zinc, and manages cellular redox levels. We carried out tests using murine osteoclast precursors to examine the function of MT in osteoclastogenesis and evaluated their potential as targets for future osteoporosis treatments. MT genes were significantly upregulated upon differentiation from osteoclast precursors to mature osteoclasts in response to receptor activators of nuclear factor-κB (NF-κB) ligand (RANKL) stimulation, and MT3 expression was particularly pronounced in mature osteoclasts among MT genes. The knockdown of MT3 in osteoclast precursors demonstrated a remarkable inhibition of differentiation into mature osteoclasts. In preosteoclasts, MT3 knockdown suppressed the activity of mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways upon RANKL stimulation, leading to affect cell survival through elevated cleaved Caspase 3 and poly (ADP-ribose) polymerase (PARP) levels. Additionally, ROS levels were decreased, and nuclear factor erythroid 2-related factor 2 (NRF2) (a suppressor of ROS) and the downstream antioxidant proteins, such as catalase (CAT) and heme oxygenase 1 (HO-1), were more highly expressed in the MT3 preosteoclast knockdowns. mitochondrial ROS, which is involved in mitochondrial biogenesis and the production of reactive oxygen species, were similarly decreased because cAMP response element-binding (CREB) and peroxisome proliferator-activated receptor γ coactivator 1ß (PGC-1ß) were less activated due to MT3 depletion. Thus, by modulating ROS through the NRF2 pathway, MT3 plays a crucial role in regulating osteoclast differentiation and survival, acting as a metabolic modulator of intracellular zinc ions.

14.
J Neurotrauma ; 40(23-24): 2566-2579, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37503626

RESUMEN

Neonatal spinal cord injury (SCI) shows better functional outcomes than adult SCI. Although the regenerative capability in the neonatal spinal cord may have cues in the treatment of adult SCI, the mechanism underlying neonatal spinal cord regeneration after SCI is unclear. We previously reported age-dependent variation in the pathogenesis of inflammation after SCI. Therefore, we explored differences in the pathogenesis of inflammation after SCI between neonatal and adult mice and their effect on axon regeneration and functional outcome. We established two-day-old spinal cord crush mice as a model of neonatal SCI. Immunohistochemistry of the spinal cord revealed that the nuclear translocation of NF-κB, which promotes the expression of chemokines, was significantly lower in the astrocytes of neonates than in those of adults. Flow cytometry revealed that neonatal astrocytes secrete low levels of chemokines to recruit circulating neutrophils (e.g., Cxcl1 and Cxcl2) after SCI in comparison with adults. We also found that the expression of a chemokine receptor (CXCR2) and an adhesion molecule (ß2 integrin) quantified by flow cytometry was lower in neonatal circulating neutrophils than in adult neutrophils. Strikingly, these neonate-specific cellular properties seemed to be associated with no neutrophil infiltration into the injured spinal cord, followed by significantly lower expression of inflammatory cytokines (Il-1ß, Il-6 and TNF-α) after SCI in the spinal cords of neonates than in those of adults. At the same time, significantly fewer apoptotic neurons and greater axonal regeneration were observed in neonates in comparison with adults, which led to a marked recovery of locomotor function. This neonate-specific mechanism of inflammation regulation may have potential therapeutic applications in controlling inflammation after adult SCI.


Asunto(s)
Traumatismos de la Médula Espinal , Regeneración de la Medula Espinal , Ratones , Animales , Neutrófilos/metabolismo , Animales Recién Nacidos , Enfermedades Neuroinflamatorias , Axones/patología , Astrocitos/metabolismo , Médula Espinal/metabolismo , Inflamación/etiología , Quimiocinas
15.
Sci Rep ; 13(1): 11177, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429920

RESUMEN

After spinal cord injury (SCI), inflammatory cells such as macrophages infiltrate the injured area, and astrocytes migrate, forming a glial scar around macrophages. The glial scar inhibits axonal regeneration, resulting in significant permanent disability. However, the mechanism through which glial scar-forming astrocytes migrate to the injury site has not been clarified. Here we show that migrating macrophages attract reactive astrocytes toward the center of the lesion after SCI. Chimeric mice with bone marrow lacking IRF8, which controls macrophage centripetal migration after SCI, showed widely scattered macrophages in the injured spinal cord with the formation of a huge glial scar around the macrophages. To determine whether astrocytes or macrophages play a leading role in determining the directions of migration, we generated chimeric mice with reactive astrocyte-specific Socs3-/- mice, which showed enhanced astrocyte migration, and bone marrow from IRF8-/- mice. In this mouse model, macrophages were widely scattered, and a huge glial scar was formed around the macrophages as in wild-type mice that were transplanted with IRF8-/- bone marrow. In addition, we revealed that macrophage-secreted ATP-derived ADP attracts astrocytes via the P2Y1 receptor. Our findings revealed a mechanism through which migrating macrophages attract astrocytes and affect the pathophysiology and outcome after SCI.


Asunto(s)
Gliosis , Traumatismos de la Médula Espinal , Animales , Ratones , Factores Reguladores del Interferón , Macrófagos
16.
Exp Neurol ; 359: 114264, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36336030

RESUMEN

Spinal cord injury (SCI) causes reactive astrogliosis, the sequential phenotypic change of astrocytes in which naïve astrocytes (NAs) transform into reactive astrocytes (RAs) and subsequently become scar-forming astrocytes (SAs), resulting in glial scar formation around the lesion site and thereby limiting axonal regeneration and motor/sensory functional recovery. Inhibiting the transformation of RAs into SAs in the acute phase attenuates the reactive astrogliosis and promotes regeneration. However, whether or not SAs once formed can revert to RAs or SAs is unclear. We performed selective isolation of astrocytes from glial scars at different time points for a gene expression analysis and found that the expression of Sox9, an important transcriptional factor for glial cell differentiation, was significantly increased in chronic phase astrocytes (CAs) compared to SAs in the sub-acute phase. Furthermore, CAs showed a significantly lower expression of chondroitin sulfate proteoglycan (CSPG)-related genes than SAs. These results indicated that SAs changed their phenotypes according to the surrounding environment of the injured spinal cord over time. Even though the integrin-N-cadherin pathway is critical for glial scar formation, collagen-I-grown scar-forming astrocytes (Col-I-SAs) did not change their phenotype after depleting the effect of integrin or N-cadherin. In addition, we found that Col-I-SAs transplanted into a naïve spinal cord formed glial scar again by maintaining a high expression of genes involved in the integrin-N-cadherin pathway and a low expression of CSPG-related genes. Interestingly, the transplanted Col-I-SAs changed NAs into SAs, and anti-ß1-integrin antibody blocked the recruitment of SAs while reducing the volume of glial scar in the chronic phase. Our findings indicate that while the characteristics of glial scars change over time after SCI, SAs have a cell-autonomous function to form and maintain a glial scar, highlighting the basic mechanism underlying the persistence of glial scars after central nervous system injury until the chronic phase, which may be a therapeutic target.


Asunto(s)
Gliosis , Traumatismos de la Médula Espinal , Humanos , Gliosis/patología , Astrocitos/metabolismo , Cicatriz/patología , Traumatismos de la Médula Espinal/patología , Médula Espinal/patología , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Integrina beta1/metabolismo , Cadherinas/metabolismo , Integrinas/metabolismo , Integrinas/uso terapéutico , Inflamación/metabolismo
17.
Res Sq ; 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36789440

RESUMEN

After spinal cord injury (SCI), inflammatory cells such as macrophages infiltrate the injured area, and astrocytes migrate, forming a glial scar around macrophages. The glial scar inhibits axonal regeneration, resulting in significant permanent disability. However, the mechanism by which glial scar-forming astrocytes migrate to the injury site has not been clarified. Here we show that migrating macrophages attract reactive astrocytes toward the center of the lesion after SCI. Chimeric mice with bone marrow lacking IRF8, which controls macrophage centripetal migration after SCI, showed widely scattered macrophages in injured spinal cord with the formation of a huge glial scar around the macrophages. To determine whether astrocytes or macrophages play a leading role in determining the directions of migration, we generated chimeric mice with reactive astrocyte-specific Socs3 -/- mice, which showed enhanced astrocyte migration, and bone marrow from IRF8 -/- mice. In this mouse model, macrophages were widely scattered, and a huge glial scar was formed around the macrophages as in wild-type mice that were transplanted with IRF8 -/ bone marrow. In addition, we revealed that macrophage-secreted ATP-derived ADP attracts astrocytes via the P2Y1 receptor. Our findings revealed a mechanism in which migrating macrophages attracted astrocytes and affected the pathophysiology and outcome after SCI.

18.
Front Immunol ; 14: 1290100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022538

RESUMEN

Background: Spinal cord injury (SCI) is a devastating disease that results in permanent paralysis. Currently, there is no effective treatment for SCI, and it is important to identify factors that can provide therapeutic intervention during the course of the disease. Zinc, an essential trace element, has attracted attention as a regulator of inflammatory responses. In this study, we investigated the effect of zinc status on the SCI pathology and whether or not zinc could be a potential therapeutic target. Methods: We created experimental mouse models with three different serum zinc concentration by changing the zinc content of the diet. After inducing contusion injury to the spinal cord of three mouse models, we assessed inflammation, apoptosis, demyelination, axonal regeneration, and the number of nuclear translocations of NF-κB in macrophages by using qPCR and immunostaining. In addition, macrophages in the injured spinal cord of these mouse models were isolated by flow cytometry, and their intracellular zinc concentration level and gene expression were examined. Functional recovery was assessed using the open field motor score, a foot print analysis, and a grid walk test. Statistical analysis was performed using Wilcoxon rank-sum test and ANOVA with the Tukey-Kramer test. Results: In macrophages after SCI, zinc deficiency promoted nuclear translocation of NF-κB, polarization to pro-inflammatory like phenotype and expression of pro-inflammatory cytokines. The inflammatory response exacerbated by zinc deficiency led to worsening motor function by inducing more apoptosis of oligodendrocytes and demyelination and inhibiting axonal regeneration in the lesion site compared to the normal zinc condition. Furthermore, zinc supplementation after SCI attenuated these zinc-deficiency-induced series of responses and improved motor function. Conclusion: We demonstrated that zinc affected axonal regeneration and motor functional recovery after SCI by negatively regulating NF-κB activity and the subsequent inflammatory response in macrophages. Our findings suggest that zinc supplementation after SCI may be a novel therapeutic strategy for SCI.


Asunto(s)
Enfermedades Desmielinizantes , Traumatismos de la Médula Espinal , Ratones , Animales , FN-kappa B/metabolismo , Traumatismos de la Médula Espinal/patología , Macrófagos/metabolismo , Modelos Animales de Enfermedad , Minerales/uso terapéutico , Zinc/metabolismo , Enfermedades Desmielinizantes/metabolismo
19.
J Neuroinflammation ; 9: 116, 2012 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-22651847

RESUMEN

BACKGROUND: There is increasing interest in astrocyte biology because astrocytes have been demonstrated to play prominent roles in physiological and pathological conditions of the central nervous system, including neuroinflammation. To understand astrocyte biology, primary astrocyte cultures are most commonly used because of the direct accessibility of astrocytes in this system. However, this advantage can be hindered by microglial contamination. Although several authors have warned regarding microglial contamination in this system, complete microglial elimination has never been achieved. METHODS: The number and proliferative potential of contaminating microglia in primary astrocyte cultures were quantitatively assessed by immunocytologic and flow cytometric analyses. To examine the utility of clodronate for microglial elimination, primary astrocyte cultures or MG-5 cells were exposed to liposomal or free clodronate, and then immunocytologic, flow cytometric, and gene expression analyses were performed. The gene expression profiles of microglia-eliminated and microglia-contaminated cultures were compared after interleukin-6 (IL-6) stimulation. RESULTS: The percentage of contaminating microglia exceeded 15% and continued to increase because of their high proliferative activity in conventional primary astrocyte cultures. These contaminating microglia were selectively eliminated low concentration of liposomal clodronate. Although primary microglia and MG-5 cells were killed by both liposomal and free clodronate, free clodronate significantly affected the viability of astrocytes. In contrast, liposomal clodronate selectively eliminated microglia without affecting the viability, proliferation or activation of astrocytes. The efficacy of liposomal clodronate was much higher than that of previously reported methods used for decreasing microglial contamination. Furthermore, we observed rapid tumor necrosis factor-α and IL-1b gene induction in conventional primary astrocyte cultures after IL-6 stimulation, which was due to the activation of the Janus kinase/signal transducer and activator of the transcription pathway in contaminating microglia. CONCLUSIONS: Because contaminating microglia could result in erroneous data regarding the pro-inflammatory properties of astrocytes, astrocyte biology should be studied in the absence of microglial contamination. Our simple method will be widely applicable to experimental studies of astrocyte biology and provide clues for understanding the role of astrocytes in neural development, function and disease.


Asunto(s)
Astrocitos/efectos de los fármacos , Ácido Clodrónico/farmacología , Liposomas/farmacología , Microglía/efectos de los fármacos , Cultivo Primario de Células , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Astrocitos/citología , Conservadores de la Densidad Ósea/farmacología , Línea Celular , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Microglía/citología , Cultivo Primario de Células/métodos
20.
Spine (Phila Pa 1976) ; 47(11): E485-E493, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34802027

RESUMEN

STUDY DESIGN: Basic science study. OBJECTIVE: The aim of this study was to examine whether epidural fat tissue (EFT) transplantation can prevent epidural adhesion after laminectomy more efficiently than subcutaneous fat tissue (SFT) transplantation. SUMMARY OF BACKGROUND DATA: Epidural adhesion is almost inevitable after laminectomy. Although many materials have been used to prevent adhesion, none has been widely accepted. As EFT is an ectopic fat tissue located on the dura mater and there is no adhesion between EFT and the dura mater, we focused on the efficacy of EFT for adhesion prevention. METHODS: We examined the differences in histology and gene expression between EFT and SFT of mice. We performed laminectomy at the 10th thoracic level and immediately transplanted EFT or SFT to the dura mater in mice. At 6 weeks after transplantation, we performed histological and gene expression analyses and evaluated the adhesion tenacity. In addition, we examined the characteristic differences between human EFT and SFT. RESULTS: The adipocytes of EFT were significantly smaller than those of SFT in mice and humans. The gene expression of inflammatory cytokine and fibrosis-related factors was significantly higher in SFT than in EFT. At 6 weeks after transplantation, the percentage of the remaining fat area over the dura mater was significantly greater in the EFT group than in SFT group, and the adhesion tenacity score was significantly lower in the EFT group than that in the SFT group. An RNA sequencing analysis revealed 1921 differentially expressed genes (DEGs) between human EFT and SFT, and a Gene Ontology term associated with the inflammatory response was most highly enriched in SFT. CONCLUSION: EFT has different molecular and histological profiles from SFT and EFT grafting is more effective for epidural adhesion prevention than conventional SFT transplantation after laminectomy in a mouse model.Level of Evidence: N/A.


Asunto(s)
Cicatriz , Laminectomía , Animales , Cicatriz/patología , Cicatriz/prevención & control , Modelos Animales de Enfermedad , Duramadre/patología , Duramadre/cirugía , Espacio Epidural/patología , Espacio Epidural/cirugía , Fibrosis , Humanos , Laminectomía/efectos adversos , Ratones , Grasa Subcutánea , Adherencias Tisulares/genética , Adherencias Tisulares/patología , Adherencias Tisulares/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA