Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pathol ; 263(4-5): 429-441, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837231

RESUMEN

The Ppy gene encodes pancreatic polypeptide (PP) secreted by PP- or γ-cells, which are a subtype of endocrine cells localised mainly in the islet periphery. For a detailed characterisation of PP cells, we aimed to establish PP cell lines. To this end, we generated a mouse model harbouring the SV40 large T antigen (TAg) in the Rosa26 locus, which is expressed upon Ppy-promoter-mediated Cre-loxP recombination. Whereas Insulin1-CreERT-mediated TAg expression in beta cells resulted in insulinoma, surprisingly, Ppy-Cre-mediated TAg expression resulted in the malignant transformation of Ppy-lineage cells. These mice showed distorted islet structural integrity at 5 days of age compared with normal islets. CK19+ duct-like lesions contiguous with the islets were observed at 2 weeks of age, and mice developed aggressive pancreatic ductal adenocarcinoma (PDAC) at 4 weeks of age, suggesting that PDAC can originate from the islet/endocrine pancreas. This was unexpected as PDAC is believed to originate from the exocrine pancreas. RNA-sequencing analysis of Ppy-lineage islet cells from 7-day-old TAg+ mice showed a downregulation and an upregulation of endocrine and exocrine genes, respectively, in addition to the upregulation of genes and pathways associated with PDAC. These results suggest that the expression of an oncogene in Ppy-lineage cells induces a switch from endocrine cell fate to PDAC. Our findings demonstrate that Ppy-lineage cells may be an origin of PDAC and may provide novel insights into the pathogenesis of pancreatic cancer, as well as possible therapeutic strategies. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Carcinoma Ductal Pancreático , Linaje de la Célula , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Ratones , Ratones Transgénicos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Transformación Celular Neoplásica/metabolismo , Islotes Pancreáticos/patología , Islotes Pancreáticos/metabolismo , Antígenos Transformadores de Poliomavirus/genética , Antígenos Transformadores de Poliomavirus/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos
2.
Plants (Basel) ; 12(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37896071

RESUMEN

Nuclear fusion is essential for the sexual reproduction of various organisms, including plants, animals, and fungi. During the life cycle of flowering plants, nuclear fusion occurs three times: once during female gametogenesis and twice during double fertilization, when two sperm cells fertilize the egg and the central cell. Haploid nuclei migrate in an actin filament-dependent manner to become in close contact and, then, two nuclei fuse. The nuclear fusion process in plant reproduction is achieved through sequential nuclear membrane fusion events. Recent molecular genetic analyses using Arabidopsis thaliana showed the conservation of nuclear membrane fusion machinery between plants and the budding yeast Saccharomyces cerevisiae. These include the heat-shock protein 70 in the endoplasmic reticulum and the conserved nuclear membrane proteins. Analyses of the A. thaliana mutants of these components show that the completion of the sperm nuclear fusion at fertilization is essential for proper embryo and endosperm development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA