Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(17): 4512-4530.e22, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34343496

RESUMEN

Cytotoxic T lymphocyte (CTL) responses against tumors are maintained by stem-like memory cells that self-renew but also give rise to effector-like cells. The latter gradually lose their anti-tumor activity and acquire an epigenetically fixed, hypofunctional state, leading to tumor tolerance. Here, we show that the conversion of stem-like into effector-like CTLs involves a major chemotactic reprogramming that includes the upregulation of chemokine receptor CXCR6. This receptor positions effector-like CTLs in a discrete perivascular niche of the tumor stroma that is densely occupied by CCR7+ dendritic cells (DCs) expressing the CXCR6 ligand CXCL16. CCR7+ DCs also express and trans-present the survival cytokine interleukin-15 (IL-15). CXCR6 expression and IL-15 trans-presentation are critical for the survival and local expansion of effector-like CTLs in the tumor microenvironment to maximize their anti-tumor activity before progressing to irreversible dysfunction. These observations reveal a cellular and molecular checkpoint that determines the magnitude and outcome of anti-tumor immune responses.


Asunto(s)
Receptores CXCR6/metabolismo , Linfocitos T Citotóxicos/inmunología , Microambiente Tumoral , Animales , Antígeno B7-H1/metabolismo , Comunicación Celular , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Quimiocina CXCL16 , Células Dendríticas/metabolismo , Interleucina-12/metabolismo , Interleucina-15/metabolismo , Ligandos , Ganglios Linfáticos/metabolismo , Melanoma/inmunología , Melanoma/patología , Ratones Endogámicos C57BL
2.
Immunity ; 56(1): 143-161.e11, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36630913

RESUMEN

Although T cells can exert potent anti-tumor immunity, a subset of T helper (Th) cells producing interleukin-22 (IL-22) in breast and lung tumors is linked to dismal patient outcome. Here, we examined the mechanisms whereby these T cells contribute to disease. In murine models of lung and breast cancer, constitutional and T cell-specific deletion of Il22 reduced metastases without affecting primary tumor growth. Deletion of the IL-22 receptor on cancer cells decreases metastasis to a degree similar to that seen in IL-22-deficient mice. IL-22 induced high expression of CD155, which bound to the activating receptor CD226 on NK cells. Excessive activation led to decreased amounts of CD226 and functionally impaired NK cells, which elevated the metastatic burden. IL-22 signaling was also associated with CD155 expression in human datasets and with poor patient outcomes. Taken together, our findings reveal an immunosuppressive circuit activated by T cell-derived IL-22 that promotes lung metastasis.


Asunto(s)
Interleucinas , Neoplasias , Receptores Virales , Linfocitos T Colaboradores-Inductores , Animales , Humanos , Ratones , Antígenos de Diferenciación de Linfocitos T/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Células Asesinas Naturales/metabolismo , Neoplasias/metabolismo , Unión Proteica , Linfocitos T Colaboradores-Inductores/metabolismo , Interleucina-22
3.
Nature ; 629(8011): 417-425, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658748

RESUMEN

Cancer-specific TCF1+ stem-like CD8+ T cells can drive protective anticancer immunity through expansion and effector cell differentiation1-4; however, this response is dysfunctional in tumours. Current cancer immunotherapies2,5-9 can promote anticancer responses through TCF1+ stem-like CD8+ T cells in some but not all patients. This variation points towards currently ill-defined mechanisms that limit TCF1+CD8+ T cell-mediated anticancer immunity. Here we demonstrate that tumour-derived prostaglandin E2 (PGE2) restricts the proliferative expansion and effector differentiation of TCF1+CD8+ T cells within tumours, which promotes cancer immune escape. PGE2 does not affect the priming of TCF1+CD8+ T cells in draining lymph nodes. PGE2 acts through EP2 and EP4 (EP2/EP4) receptor signalling in CD8+ T cells to limit the intratumoural generation of early and late effector T cell populations that originate from TCF1+ tumour-infiltrating CD8+ T lymphocytes (TILs). Ablation of EP2/EP4 signalling in cancer-specific CD8+ T cells rescues their expansion and effector differentiation within tumours and leads to tumour elimination in multiple mouse cancer models. Mechanistically, suppression of the interleukin-2 (IL-2) signalling pathway underlies the PGE2-mediated inhibition of TCF1+ TIL responses. Altogether, we uncover a key mechanism that restricts the IL-2 responsiveness of TCF1+ TILs and prevents anticancer T cell responses that originate from these cells. This study identifies the PGE2-EP2/EP4 axis as a molecular target to restore IL-2 responsiveness in anticancer TILs to achieve cancer immune control.


Asunto(s)
Linfocitos T CD8-positivos , Proliferación Celular , Dinoprostona , Linfocitos Infiltrantes de Tumor , Neoplasias , Células Madre , Escape del Tumor , Animales , Femenino , Humanos , Masculino , Ratones , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Dinoprostona/metabolismo , Modelos Animales de Enfermedad , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Interleucina-2 , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Linfocitos Infiltrantes de Tumor/citología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/prevención & control , Subtipo EP2 de Receptores de Prostaglandina E/deficiencia , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/deficiencia , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Transducción de Señal , Células Madre/citología , Células Madre/inmunología , Células Madre/metabolismo , Escape del Tumor/inmunología
4.
Cancer Immunol Immunother ; 73(6): 100, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630291

RESUMEN

In multiple myeloma (MM), B cell maturation antigen (BCMA)-directed CAR T cells have emerged as a novel therapy with potential for long-term disease control. Anti-BCMA CAR T cells with a CD8-based transmembrane (TM) and CD137 (41BB) as intracellular costimulatory domain are in routine clinical use. As the CAR construct architecture can differentially impact performance and efficacy, the optimal construction of a BCMA-targeting CAR remains to be elucidated. Here, we hypothesized that varying the constituents of the CAR structure known to impact performance could shed light on how to improve established anti-BCMA CAR constructs. CD8TM.41BBIC-based anti-BCMA CAR vectors with either a long linker or a short linker between the light and heavy scFv chain, CD28TM.41BBIC-based and CD28TM.CD28IC-based anti-BCMA CAR vector systems were used in primary human T cells. MM cell lines were used as target cells. The short linker anti-BCMA CAR demonstrated higher cytokine production, whereas in vitro cytotoxicity, T cell differentiation upon activation and proliferation were superior for the CD28TM.CD28IC-based CAR. While CD28TM.CD28IC-based CAR T cells killed MM cells faster, the persistence of 41BBIC-based constructs was superior in vivo. While CD28 and 41BB costimulation come with different in vitro and in vivo advantages, this did not translate into a superior outcome for either tested model. In conclusion, this study showcases the need to study the influence of different CAR architectures based on an identical scFv individually. It indicates that current scFv-based anti-BCMA CAR with clinical utility may already be at their functional optimum regarding the known structural variations of the scFv linker.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/terapia , Antígeno de Maduración de Linfocitos B , Anticuerpos , Antígenos CD28 , Tratamiento Basado en Trasplante de Células y Tejidos
5.
Biol Chem ; 405(7-8): 485-515, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38766710

RESUMEN

Chimeric antigen receptor (CAR)-T cell therapy has led to remarkable clinical outcomes in the treatment of hematological malignancies. However, challenges remain, such as limited infiltration into solid tumors, inadequate persistence, systemic toxicities, and manufacturing insufficiencies. The use of alternative cell sources for CAR-based therapies, such as natural killer cells (NK), macrophages (MΦ), invariant Natural Killer T (iNKT) cells, γδT cells, neutrophils, and induced pluripotent stem cells (iPSC), has emerged as a promising avenue. By harnessing these cells' inherent cytotoxic mechanisms and incorporating CAR technology, common CAR-T cell-related limitations can be effectively mitigated. We herein present an overview of the tumoricidal mechanisms, CAR designs, and manufacturing processes of CAR-NK cells, CAR-MΦ, CAR-iNKT cells, CAR-γδT cells, CAR-neutrophils, and iPSC-derived CAR-cells, outlining the advantages, limitations, and potential solutions of these therapeutic strategies.


Asunto(s)
Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/inmunología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/inmunología , Inmunoterapia Adoptiva , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/citología , Macrófagos/inmunología , Macrófagos/citología , Macrófagos/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Animales , Neoplasias/terapia , Neoplasias/inmunología , Linfocitos T/inmunología , Linfocitos T/citología
6.
Transfus Med Hemother ; 51(2): 111-118, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38584695

RESUMEN

Introduction: Primary human blood cells represent an essential model system to study physiology and disease. However, human blood is a limited resource. During healthy donor plateletpheresis, the leukoreduction system chamber (LRSC) reduces the leukocyte amount within the subsequent platelet concentrate through saturated, fluidized, particle bed filtration technology. Normally, the LRSC is discarded after apheresis is completed. Compared to peripheral blood, LRSC yields 10-fold mononuclear cell concentration. Methods: To explore if those retained leukocytes are attractive for research purposes, we isolated CD3+ T cells from the usually discarded LRSCs via density gradient centrifugation in order to manufacture CD19-targeted chimeric antigen receptor (CAR) T cells. Results: Immunophenotypic characterization revealed viable and normal CD4+ and CD8+ T-cell populations within LRSC, with low CD19+ B cell counts. Magnetic-activated cell sorting (MACS) purified CD3+ T cells were transduced with CD19 CAR-encoding lentiviral self-inactivating vectors using concentrated viral supernatants. Robust CD19 CAR cell surface expression on transduced T cells was confirmed by flow cytometry. CD19 CAR T cells were further enriched through anti-CAR MACS, yielding 80% CAR+ T-cell populations. In vitro CAR T cell expansion to clinically relevant numbers was achieved. To prove functionality, CAR T cells were co-incubated with the human CD19+ B cell precursor leukemia cell line Nalm6. Compared to unmodified T cells, CD19 CAR T cells effectively eradicated Nalm6 cells. Conclusion: Taken together, we can show that lymphocytes isolated from LRSCs of plateletpheresis sets can be efficiently used for the generation of functional CAR T cells for experimental purposes.

7.
Int J Cancer ; 153(10): 1706-1725, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37350095

RESUMEN

The clinical application of chimeric antigen receptor (CAR) T-cell therapy has rapidly changed the treatment options for terminally ill patients with defined blood-borne cancer types. However, CAR T-cell therapy can lead to severe therapy-associated toxicities including CAR-related hematotoxicity, ON-target OFF-tumor toxicity, cytokine release syndrome (CRS) or immune effector cell-associated neurotoxicity syndrome (ICANS). Just as CAR T-cell therapy has evolved regarding receptor design, gene transfer systems and production protocols, the management of side effects has also improved. However, because of measures taken to abrogate adverse events, CAR T-cell viability and persistence might be impaired before complete remission can be achieved. This has fueled efforts for the development of extrinsic and intrinsic strategies for better control of CAR T-cell activity. These approaches can mediate a reversible resting state or irreversible T-cell elimination, depending on the route chosen. Control can be passive or active. By combination of CAR T-cells with T-cell inhibiting compounds, pharmacologic control, mostly independent of the CAR construct design used, can be achieved. Other strategies involve the genetic modification of T-cells or further development of the CAR construct by integration of molecular ON/OFF switches such as suicide genes. Alternatively, CAR T-cell activity can be regulated intracellularly through a self-regulation function or extracellularly through titration of a CAR adaptor or of a priming small molecule. In this work, we review the current strategies and mechanisms to control activity of CAR T-cells reversibly or irreversibly for preventing and for managing therapy-associated toxicities.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Síndromes de Neurotoxicidad , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Linfocitos T , Receptores de Antígenos de Linfocitos T/genética , Síndromes de Neurotoxicidad/etiología , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Neoplasias Hematológicas/etiología
8.
Br J Cancer ; 129(4): 696-705, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37400680

RESUMEN

BACKGROUND: In many situations, the therapeutic efficacy of CAR T cells is limited due to immune suppression and poor persistence. Immunostimulatory fusion protein (IFP) constructs have been advanced as a tool to convert suppressive signals into stimulation and thus promote the persistence of T cells, but no universal IFP design has been established so far. We now took advantage of a PD-1-CD28 IFP as a clinically relevant structure to define key determinants of IFP activity. METHODS: We compared different PD-1-CD28 IFP variants in a human leukemia model to assess the impact of distinctive design choices on CAR T cell performance in vitro and a xenograft mouse model. RESULTS: We observed that IFP constructs that putatively exceed the extracellular length of PD-1 induce T-cell response without CAR target recognition, rendering them unsuitable for tumour-specific therapy. IFP variants with physiological PD-1 length ameliorated CAR T cell effector function and proliferation in response to PD-L1+ tumour cells in vitro and prolonged survival in vivo. Transmembrane or extracellular CD28 domains were found to be replaceable by corresponding PD-1 domains for in vivo efficacy. CONCLUSION: PD-1-CD28 IFP constructs must mimic the physiological interaction of PD-1 with PD-L1 to retain selectivity and mediate CAR-conditional therapeutic activity.


Asunto(s)
Inmunoterapia Adoptiva , Leucemia , Humanos , Ratones , Animales , Antígenos CD28 , Receptor de Muerte Celular Programada 1 , Antígeno B7-H1 , Línea Celular Tumoral
9.
Cancer Immunol Immunother ; 72(7): 2499-2512, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37041225

RESUMEN

Bispecific T-cell engager (BiTE®) molecules recruit T cells to cancer cells through CD3ε binding, independently of T-cell receptor (TCR) specificity. Whereas physiological T-cell activation is dependent on signal 1 (TCR engagement) and signal 2 (co-stimulation), BiTE molecule-mediated T-cell activation occurs without additional co-stimulation. As co-stimulatory and inhibitory molecules modulate the strength and nature of T-cell responses, we studied the impact of the expression profile of those molecules on target cells for BiTE molecule-mediated T-cell activation in the context of acute myeloid leukemia (AML). Accordingly, we created a novel in vitro model system using murine Ba/F3 cells transduced with human CD33 ± CD86 ± PD-L1. T-cell fitness was assessed by T-cell function assays in co-cultures and immune synapse formation by applying a CD33 BiTE molecule (AMG 330). Using our cell-based model platform, we found that the expression of positive co-stimulatory molecules on target cells markedly enhanced BiTE molecule-mediated T-cell activation. The initiation and stability of the immune synapse between T cells and target cells were significantly increased through the expression of CD86 on target cells. By contrast, the co-inhibitory molecule PD-L1 impaired the stability of BiTE molecule-induced immune synapses and subsequent T-cell responses. We validated our findings in primary T-cell-AML co-cultures, demonstrating a PD-L1-mediated reduction in redirected T-cell activation. The addition of the immunomodulatory drug (IMiD) lenalidomide to co-cultures led to stabilization of immune synapses and improved subsequent T-cell responses. We conclude that target cells modulate CD33 BiTE molecule-dependent T-cell activation and hence, combinatorial strategies might contribute to enhanced efficacy.


Asunto(s)
Anticuerpos Biespecíficos , Leucemia Mieloide Aguda , Animales , Humanos , Ratones , Antígeno B7-H1/metabolismo , Proteínas de Punto de Control Inmunitario/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Lectina 3 Similar a Ig de Unión al Ácido Siálico/metabolismo , Linfocitos T
10.
Cancer Immunol Immunother ; 72(12): 4195-4207, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37848682

RESUMEN

T cells expressing a mesothelin (MSLN)-specific T cell receptor fusion construct (TRuC®), called TC-210, have demonstrated robust antitumor activity in preclinical models of mesothelioma, ovarian cancer, and lung cancer. However, they are susceptible to suppression by the programmed cell death protein 1 (PD-1)/programmed cell death protein ligand 1 (PD-L1) axis and lack intrinsic costimulatory signaling elements. To enhance the function of anti-MSLN TRuC-T cells, chimeric switch receptors (CSRs) have been designed to co-opt the immunosuppressive PD-1/PD-L1 axis and to deliver a CD28-mediated costimulatory signal. Here, we report that coexpression of the PD1-CD28 CSR in TRuC-T cells enhanced T cell receptor signaling, increased proinflammatory effector cytokines, decreased anti-inflammatory cytokines, and sustained effector function in the presence of PD-L1 when compared with TC-210. Anti-MSLN TRuC-T cells engineered to coexpress PD1-CD28 CSRs comprising the ectodomain of PD-1 and the intracellular domain of CD28 linked by the transmembrane domain of PD-1 were selected for integration into an anti-MSLN TRuC-T cell therapy product called TC-510. In vitro, TC-510 showed significant improvements in persistence and resistance to exhaustion upon chronic stimulation by tumor cells expressing MSLN and PD-L1 when compared with TC-210. In vivo, TC-510 showed a superior ability to provide durable protection following tumor rechallenge, versus TC-210. These data demonstrate that integration of a PD1-CD28 CSR into TRuC-T cells improves effector function, resistance to exhaustion, and prolongs persistence. Based on these findings, TC-510 is currently being evaluated in patients with MSLN-expressing solid tumors.


Asunto(s)
Antígenos CD28 , Mesotelioma , Humanos , Mesotelina , Receptor de Muerte Celular Programada 1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Citocinas/metabolismo
11.
Br J Cancer ; 127(12): 2175-2185, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36266575

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy has been successfully translated to clinical practice for the treatment of B cell malignancies. The suppressive microenvironment of many malignancies is a bottleneck preventing treatment success of CAR T cells in a broader range of tumours. Among others, the immunosuppressive metabolite adenosine is present in high concentrations within many tumours and dampens anti-tumour function of immune cells and consequently therapeutic response. METHODS: Here, we present the impact of the selective adenosine A2A and A2B receptor antagonist AB928/etrumadenant on CAR T cell cytokine secretion, proliferation, and cytotoxicity. Using phosphorylation-specific flow cytometry, we evaluated the capability of AB928 to shield CAR T cells from adenosine-mediated signalling. The effect of orally administered AB928 on CAR T cells was assessed in a syngeneic mouse model of colon carcinoma. RESULTS: We found that immunosuppressive signalling in CAR T cells in response to adenosine was fully blocked by the small molecule inhibitor. AB928 treatment enhanced CAR T cell cytokine secretion and proliferation, granted efficient cytolysis of tumour cells in vitro and augmented CAR T cell activation in vivo. CONCLUSIONS: Together our results suggest that combination therapy with AB928 represents a promising approach to improve adoptive cell therapy.


Asunto(s)
Neoplasias , Linfocitos T , Animales , Ratones , Adenosina/farmacología , Citocinas , Microambiente Tumoral
12.
Biol Chem ; 403(5-6): 495-508, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35073465

RESUMEN

Driven by the potential to broaden the target space of conventional monospecific antibodies, the field of multi-specific antibody derivatives is growing rapidly. The production and screening of these artificial proteins entails a high combinatorial complexity. Antibody-domain exchange was previously shown to be a versatile strategy to produce bispecific antibodies in a robust and efficient manner. Here, we show that the domain exchange reaction to generate hybrid antibodies also functions under physiological conditions. Accordingly, we modified the exchange partners for use in therapeutic applications, in which two inactive prodrugs convert into a product with additional functionalities. We exemplarily show the feasibility for generating active T cell bispecific antibodies from two inactive prodrugs, which per se do not activate T cells alone. The two complementary prodrugs harbor antigen-targeting Fabs and non-functional anti-CD3 Fvs fused to IgG-CH3 domains engineered to drive chain-exchange reactions between them. Importantly, Prodrug-Activating Chain Exchange (PACE) could be an attractive option to conditionally activate therapeutics at the target site. Several examples are provided that demonstrate the efficacy of PACE as a new principle of cancer immunotherapy in vitro and in a human xenograft model.


Asunto(s)
Anticuerpos Biespecíficos , Profármacos , Humanos , Inmunoterapia , Profármacos/farmacología , Linfocitos T
13.
Blood ; 136(12): 1407-1418, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32483603

RESUMEN

Anti-CD19 chimeric antigen receptor (CAR) T cells showed significant antileukemic activity in B-precursor acute lymphoblastic leukemia (ALL). Allogeneic, HLA-mismatched off-the-shelf third-party donors may offer ideal fitness of the effector cells, but carry the risk of graft-versus-host disease. Knockout (KO) of the endogenous T-cell receptor (TCR) in CD19-CAR-T cells may be a promising solution. Here, we induced a CRISPR/Cas9-mediated KO of the TCRß chain in combination with a second-generation retroviral CAR transduction including a 4-1BB costimulatory domain in primary T cells. This tandem engineering led to a highly functional population of TCR-KO-CAR-T cells with strong activation (CD25, interferon γ), proliferation, and specific killing upon CD19 target recognition. TCR-KO-CAR-T cells had a balanced phenotype of central memory and effector memory T cells. KO of the endogenous TCR in T cells strongly ablated alloreactivity in comparison with TCR-expressing T cells. In a patient-derived xenograft model of childhood ALL, TCR-KO-CAR-T cells clearly controlled CD19+ leukemia burden and improved survival in vivo. However, coexpression of endogenous TCR plus CAR led to superior persistence of T cells and significantly prolonged leukemia control in vivo, confirmed by a second in vivo model using the leukemia cell line NALM6. These results point toward an essential role of the endogenous TCR for longevity of the response at the price of alloreactivity. In conclusion, anti-CD19 CAR T cells with a CRISPR/Cas9-mediated TCR-KO are promising candidates for nonmatched third-party adoptive T-cell transfer with high antileukemic functionality in the absence of alloreactivity, but long-term persistence in vivo is better in the presence of the endogenous TCR.


Asunto(s)
Sistemas CRISPR-Cas , Inmunoterapia Adoptiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Receptores de Antígenos de Linfocitos T/genética , Transducción Genética , Células Tumorales Cultivadas
14.
Semin Cancer Biol ; 65: 80-90, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31705998

RESUMEN

The remarkable success of chimeric antigen receptor (CAR)-engineered T cells in pre-B cell acute lymphoblastic leukemia (ALL) and B cell lymphoma led to the approval of anti-CD19 CAR T cells as the first ever CAR T cell therapy in 2017. However, with the number of CAR T cell-treated patients increasing, observations of tumor escape and resistance to CAR T cell therapy with disease relapse are demonstrating the current limitations of this therapeutic modality. Mechanisms hampering CAR T cell efficiency include limited T cell persistence, caused for example by T cell exhaustion and activation-induced cell death (AICD), as well as therapy-related toxicity. Furthermore, the physical properties, antigen heterogeneity and immunosuppressive capacities of solid tumors have prevented the success of CAR T cells in these entities. Herein we review current obstacles of CAR T cell therapy and propose strategies in order to overcome these hurdles and expand CAR T cell therapy to a broader range of cancer patients.


Asunto(s)
Resistencia a Antineoplásicos/inmunología , Inmunoterapia Adoptiva/efectos adversos , Neoplasias/tratamiento farmacológico , Receptores Quiméricos de Antígenos/inmunología , Humanos , Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/inmunología
17.
Blood ; 132(23): 2484-2494, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30275109

RESUMEN

The CD33-targeting bispecific T-cell engager (BiTE) AMG 330 proved to be highly efficient in mediating cytolysis of acute myeloid leukemia (AML) cells in vitro and in mouse models. Yet, T-cell activation is correlated with upregulation of programmed cell death-ligand 1 (PD-L1) and other inhibitory checkpoints on AML cells that confer adaptive immune resistance. PD-1 and PD-L1 blocking agents may counteract T-cell dysfunction, however, at the expense of broadly distributed immune-related adverse events (irAEs). We developed a bifunctional checkpoint inhibitory T cell-engaging (CiTE) antibody that combines T-cell redirection to CD33 on AML cells with locally restricted immune checkpoint blockade. This is accomplished by fusing the extracellular domain of PD-1 (PD-1ex), which naturally holds a low affinity to PD-L1, to an αCD3.αCD33 BiTE-like scaffold. By a synergistic effect of checkpoint blockade and avidity-dependent binding, the PD-1ex attachment increases T-cell activation (3.3-fold elevation of interferon-γ) and leads to efficient and highly selective cytotoxicity against CD33+PD-L1+ cell lines (50% effective concentration = 2.3-26.9 pM) as well as patient-derived AML cells (n = 8). In a murine xenograft model, the CiTE induces complete AML eradication without initial signs of irAEs as measured by body weight loss. We conclude that our molecule preferentially targets AML cells, whereas high-affinity blockers, such as clinically approved anticancer agents, also address PD-L1+ non-AML cells. By combining the high efficacy of T-cell engagers with immune checkpoint blockade in a single molecule, we expect to minimize irAEs associated with the systemic application of immune checkpoint inhibitors and suggest high therapeutic potential, particularly for patients with relapsed/ refractory AML.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Complejo CD3 , Leucemia Mieloide Aguda , Receptor de Muerte Celular Programada 1 , Proteínas Recombinantes de Fusión , Lectina 3 Similar a Ig de Unión al Ácido Siálico , Anticuerpos de Cadena Única , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos NOD , Proteínas de Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/uso terapéutico , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Proc Natl Acad Sci U S A ; 114(49): 12994-12999, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29150554

RESUMEN

IL-22 has been identified as a cancer-promoting cytokine that is secreted by infiltrating immune cells in several cancer models. We hypothesized that IL-22 regulation would occur at the interface between cancer cells and immune cells. Breast and lung cancer cells of murine and human origin induced IL-22 production from memory CD4+ T cells. In the present study, we found that IL-22 production in humans is dependent on activation of the NLRP3 inflammasome with the subsequent release of IL-1ß from both myeloid and T cells. IL-1 receptor signaling via the transcription factors AhR and RORγt in T cells was necessary and sufficient for IL-22 production. In these settings, IL-1 induced IL-22 production from a mixed T helper cell population comprised of Th1, Th17, and Th22 cells, which was abrogated by the addition of anakinra. We confirmed these findings in vitro and in vivo in two murine tumor models, in primary human breast and lung cancer cells, and in deposited expression data. Relevant to ongoing clinical trials in breast cancer, we demonstrate here that the IL-1 receptor antagonist anakinra abrogates IL-22 production and reduces tumor growth in a murine breast cancer model. Thus, we describe here a previously unrecognized mechanism by which cancer cells induce IL-22 production from memory CD4+ T cells via activation of the NLRP3 inflammasome and the release of IL-1ß to promote tumor growth. These findings may provide the basis for therapeutic interventions that affect IL-22 production by targeting IL-1 activity.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Interleucina-1beta/fisiología , Interleucinas/biosíntesis , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Medios de Cultivo Condicionados , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inflamasomas/metabolismo , Interleucinas/metabolismo , Leucocitos Mononucleares/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Trasplante de Neoplasias , Transducción de Señal , Carga Tumoral , Interleucina-22
19.
Br J Cancer ; 120(1): 26-37, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30413825

RESUMEN

Adoptive T cell therapy (ACT) refers to the therapeutic use of T cells. T cells genetically engineered to express chimeric antigen receptors (CAR) constitute the most clinically advanced form of ACT approved to date for the treatment of CD19-positive leukaemias and lymphomas. CARs are synthetic receptors that are able to confer antigen-binding and activating functions on T cells with the aim of therapeutically targeting cancer cells. Several factors are essential for CAR T cell therapy to be effective, such as recruitment, activation, expansion and persistence of bioengineered T cells at the tumour site. Despite the advances made in CAR T cell therapy, however, most tumour entities still escape immune detection and elimination. A number of strategies counteracting these problems will need to be addressed in order to render T cell therapy effective in more situations than currently possible. Non-haematological tumours are also the subject of active investigation, but ACT has so far shown only marginal success rates in these cases. New approaches are needed to enhance the ability of ACT to target solid tumours without increasing toxicity, by improving recognition, infiltration, and persistence within tumours, as well as an enhanced resistance to the suppressive tumour microenvironment.


Asunto(s)
Inmunoterapia Adoptiva/tendencias , Leucemia/terapia , Receptores Quiméricos de Antígenos/uso terapéutico , Linfocitos T/inmunología , Antígenos CD19/genética , Antígenos de Neoplasias/inmunología , Humanos , Leucemia/inmunología , Receptores Quiméricos de Antígenos/inmunología , Microambiente Tumoral/inmunología
20.
Br J Cancer ; 120(1): 79-87, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30429531

RESUMEN

BACKGROUND: CD16-chimeric antigen receptors (CAR) T cells recognise the Fc-portion of therapeutic antibodies, which can enable the selective targeting of different antigens. Limited evidence exists as to which CD16-CAR design and antibody partner might be most effective. We have hypothesised that the use of high-affinity CD16 variants, with increased Fc-terminus antibody affinity, combined with Fc-engineered antibodies, would provide superior CD16-CAR T cell efficacy. METHODS: CD16-CAR T (wild-type or variants) cells were co-cultured with Panc-1 pancreatic cancer, Raji lymphoma or A375 melanoma cells in the presence or absence of anti-CD20, anti-MCSP, wild-type or the glycoengineered antibody variants. The endpoints were proliferation, activation, and cytotoxicity in vitro. RESULTS: The CD16 158 V variant of CD16-CAR T cells showed increased cytotoxic activity against all the tested cancer cells in the presence of the wild-type antibody directed against MCSP or CD20. Glycoengineered antibodies enhanced CD16-CAR T cell activity irrespective of CD16 polymorphisms as compared with the wild-type antibody. The combination of the glycoengineered antibodies with the CD16-CAR 158 V variant synergised as seen by the increase in all endpoints. CONCLUSION: These results indicate that CD16-CAR with the high-affinity CD16 variant 158 V, combined with Fc-engineered antibodies, have high anti-tumour efficacy.


Asunto(s)
Inmunoterapia Adoptiva , Inmunoterapia , Neoplasias/terapia , Receptores Quiméricos de Antígenos/inmunología , Animales , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Receptores ErbB/genética , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/farmacología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Ratones , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Polimorfismo Genético , Receptores Quiméricos de Antígenos/uso terapéutico , Receptores de IgG/inmunología , Rituximab/farmacología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA