Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36500413

RESUMEN

Self-assembled monolayers (SAMs) of terpyridine-based transition metal (ruthenium and osmium) complexes, anchored to gold substrate via tripodal anchoring groups, have been investigated as possible redox switching elements for molecular electronics. An electrochemical study was complemented by atomic force microscopy (AFM) and scanning tunneling microscopy (STM) methods. STM was used for determination of the SAM conductance values, and computation of the attenuation factor ß from tunneling current-distance curves. We have shown that SAMs of Os-tripod molecules contain larger adlayer structures compared with SAMs of Ru-tripod molecules, which are characterized by a large number of almost evenly distributed small islands. Furthermore, upon cyclic voltammetric experimentation, Os-tripod films rearrange to form a smaller number of even larger islands, reminiscent of the Ostwald ripening process. Os-tripod SAMs displayed a higher surface concentration of molecules and lower conductance compared with Ru-tripod SAMs. The attenuation factor of Os-tripod films changed dramatically, upon electrochemical cycling, to a higher value. These observations are in accordance with previously reported electron transfer kinetics studies.


Asunto(s)
Oro , Microscopía de Túnel de Rastreo , Microscopía de Fuerza Atómica , Propiedades de Superficie , Oro/química , Oxidación-Reducción
2.
Anal Chim Acta ; 1296: 342350, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401936

RESUMEN

BACKGROUND: Spectroelectrochemistry (SEC) is a valuable analytical tool providing insights to reaction mechanisms and the structure of species involved in charge transfer reactions. Most of commercial SEC setups are based on platinum working electrodes where the adsorption of species involved in reactions often complicates their analysis. RESULTS: In this work, we employ an array of pencil graphite rods as an optically transparent working electrode in a custom-made air-tight thin-layer cell suitable for the SEC analysis performed here in acetonitrile as a representative non-aqueous solvent. The functionality of the device was demonstrated by UV-Vis SEC sensing of charge transfer reactions of ruthenium acetylacetonate, ferrocene and ethylviologen dibromide redox probes performed employing the cyclic voltammetry. The SEC response obtained for all three probes confirmed no adsorption and the absence of oxygen in the cell. Furthermore, we have developed and utilized finite element method numerical simulations considering charge transfer reactions coupled with the diffusional mass transport to model the cyclic voltammetric response and the reaction conversion in the thin-layer SEC cell. SIGNIFICANCE: Our work paves the way for easy-to-assemble customized air-tight adsorption-free SEC devices with the manufacturing costs well below those of commercially available platforms. Developed computational approaches have the predictive power for optimizing reaction conditions and the geometry of the SEC cell.

3.
Dalton Trans ; 51(36): 13703-13715, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36001067

RESUMEN

Two catecholase-like biomimetic catalysts, namely, two dinuclear copper complexes [Cu2(L1)(OH)(H2O)(EtOH)][ClO4]2 (C1) and [Cu2Ac2O(L1)ClO4] (C2) with the 2,6-bis(4-methyl piperazin-1-yl-methyl)-4-formyl-phenoxy ligand (L1) together with the mononuclear complex Cu(ClO4)2(L2) (C3) containing ligand 1,2-(C5H4N-6-OCH3-2-CHN)2CH2CH2 (L2), were synthesized. Their catalytic pathways were investigated and compared. The evaluation of the catalytic activity of compound C1 (and C2, C3) using the Michaelis-Menten model was represented by values of KM = 272.93 (223.02; 1616) µmol L-1 and Vmax of 0.981 (1.617; 1.689) µmol L-1 s-1. The role of water content in the solvent is also discussed. The dinuclear complexes C1 and C2 were found to be more efficient catalysts than mononuclear complex C3. The mode of catalytic action was characterized via cyclic voltammetry, spectrophotometry, and UV-Vis spectroelectrochemistry. The catalytic mechanism of 3,5-di-tert butyl catechol oxidation in the presence of oxygen was proposed. The reaction circle was proved by the confirmation of the chemical reversibility of complex reduction. The advantage of the in situ spectroelectrochemical measurement enabled to control the reduction of quinone formed by the chemical reaction of catechol with oxygen in solution. At this step, the simultaneous change in the absorption spectrum indicated a change in the copper redox state of the catalyst.


Asunto(s)
Catecol Oxidasa , Cobre , Biomimética , Catecol Oxidasa/química , Catecoles/química , Cobre/química , Cristalografía por Rayos X , Ligandos , Estructura Molecular , Oxidación-Reducción , Oxígeno , Quinonas , Solventes , Agua/química
4.
J Phys Chem B ; 121(28): 6841-6846, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28654289

RESUMEN

The electrochemical oxidation of the natural antioxidant 2,3-dehydrosilybin (DHS) was investigated in acetonitrile. The spectral changes during two electron and two proton oxidation registered by in situ IR spectroelectrochemistry show that the electron transfer is followed by a subsequent chemical reaction with traces of water. A benzofuranone derivative (BF) is formed by ECEC (electron transfer-chemical reaction-electron transfer-chemical reaction) process at the potential of the first oxidation wave. A minor difference in the chemical structures of flavonolignans DHS and silybin, the presence of a double bond between atoms C-2 and C-3 in the DHS molecule, causes the formation of completely different oxidation products. BF was for the first time identified as the product of the oxidation of flavonolignan DHS. Its formation was proved by electroanalytical, chromatographic, and spectroelectrochemical techniques. Molecular orbital calculations support the experimental findings.


Asunto(s)
Técnicas Electroquímicas , Flavonolignanos/química , Silimarina/química , Transporte de Electrón , Teoría Cuántica , Silibina , Espectrofotometría Infrarroja , Espectrofotometría Ultravioleta
5.
J Phys Chem B ; 118(34): 10085-91, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25079965

RESUMEN

Fluorescence of 2-(N,N-dimethylamino)-6-propionylnaphthalene dyes Badan and Prodan is quenched by tryptophan in Brij 58 micelles as well as in two cytochrome P450 proteins (CYP102, CYP119) with Badan covalently attached to a cysteine residue. Formation of nonemissive complexes between a dye molecule and tryptophan accounts for about 76% of the fluorescence intensity quenching in micelles, the rest is due to diffusive encounters. In the absence of tryptophan, fluorescence of Badan-labeled cytochromes decays with triexponential kinetics characterized by lifetimes of about 100 ps, 700-800 ps, and 3 ns. Site mutation of a histidine residue in the vicinity of the Badan label by tryptophan results in shortening of all three decay lifetimes. The relative amplitude of the fastest component increases at the expense of the two slower ones. The average quenching rate constants are 4.5 × 10(8) s(-1) (CYP102) and 3.7 × 10(8) s(-1) (CYP119), at 288 K. Cyclic voltammetry of Prodan in MeCN shows a reversible reduction peak at -1.85 V vs NHE that becomes chemically irreversible and shifts positively upon addition of water. A quasireversible reduction at -0.88 V was observed in an aqueous buffer (pH 7.3). The excited-state reduction potential of Prodan (and Badan) is estimated to vary from about +0.6 V (vs NHE) in polar aprotic media (MeCN) to approximately +1.6 V in water. Tryptophan quenching of Badan/Prodan fluorescence in CYPs and Brij 58 micelles is exergonic by ≤0.5 V and involves tryptophan oxidation by excited Badan/Prodan, coupled with a fast reaction between the reduced dye and water. Photoreduction is a new quenching mechanism for 2-(N,N-dimethylamino)-6-propionylnaphthalene dyes that are often used as solvatochromic polarity probes, FRET donors and acceptors, as well as reporters of solvation dynamics.


Asunto(s)
2-Naftilamina/análogos & derivados , Proteínas Arqueales/química , Proteínas Bacterianas/química , Sistema Enzimático del Citocromo P-450/química , Colorantes Fluorescentes/química , NADPH-Ferrihemoproteína Reductasa/química , Triptófano/química , 2-Naftilamina/química , Fluorescencia , Cinética , Micelas , Modelos Moleculares , Espectrometría de Fluorescencia , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA