Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 412(19): 4575-4584, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32548766

RESUMEN

Metal oxide (MOX) sensors are increasingly gaining attention in analytical applications. Their fundamental operation principle is based on conversion reactions of selected molecular species at their semiconducting surface. However, the exact turnover of analyte gas in relation to the concentration has not been investigated in detail to date. In the present study, two optical sensing techniques-luminescence quenching for molecular oxygen and infrared spectroscopy for carbon dioxide and methane-have been coupled for characterizing the behavior of an example semiconducting MOX methane gas sensor integrated into a recently developed low-volume gas cell. Thereby, oxygen consumption during MOX operation as well as the generation of carbon dioxide from the methane conversion reaction could be quantitatively monitored. The latter was analyzed via a direct mid-infrared gas sensor system based on substrate-integrated hollow waveguide (iHWG) technology combined with a portable Fourier transform infrared spectrometer, which has been able to not only detect the amount of generated carbon dioxide but also the consumption of methane during MOX operation. Hence, a method based entirely on direct optical detection schemes was developed for characterizing the actual signal generating processes-here for the detection of methane-via MOX sensing devices via near real-time online analysis. Graphical Abstract.

2.
ACS Sens ; 5(4): 1033-1039, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32189494

RESUMEN

According to their materials and operating parameters, metal oxide (MOX) sensors respond to target gases only by a change in sensor resistance with a lack in selectivity. By the use of infrared spectroscopy, highly discriminatory information from samples at a molecular level can be obtained and the selectivity can be enhanced. A low-volume gas cell was developed for a commercially available semiconducting MOX methane gas sensor and coupled directly to a mid-infrared gas sensor based on substrate-integrated hollow waveguide (iHWG) technology combined with a Fourier transform infrared spectrometer. This study demonstrates a sensing process with combined orthogonal sensors for fast, time-resolved, and synergic detection of methane and carbon dioxide in gas samples.


Asunto(s)
Técnicas Biosensibles/métodos , Pruebas Respiratorias/métodos , Gases/análisis , Espectrofotometría Infrarroja/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA