Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Nature ; 604(7907): 635-642, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35478233

RESUMEN

The prosperity and lifestyle of our society are very much governed by achievements in condensed matter physics, chemistry and materials science, because new products for sectors such as energy, the environment, health, mobility and information technology (IT) rely largely on improved or even new materials. Examples include solid-state lighting, touchscreens, batteries, implants, drug delivery and many more. The enormous amount of research data produced every day in these fields represents a gold mine of the twenty-first century. This gold mine is, however, of little value if these data are not comprehensively characterized and made available. How can we refine this feedstock; that is, turn data into knowledge and value? For this, a FAIR (findable, accessible, interoperable and reusable) data infrastructure is a must. Only then can data be readily shared and explored using data analytics and artificial intelligence (AI) methods. Making data 'findable and AI ready' (a forward-looking interpretation of the acronym) will change the way in which science is carried out today. In this Perspective, we discuss how we can prepare to make this happen for the field of materials science.


Asunto(s)
Inteligencia Artificial , Ciencia de los Datos
2.
Nano Lett ; 23(13): 5975-5980, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37341711

RESUMEN

Phonon scattering at grain boundaries (GBs) is significant in controlling the nanoscale device thermal conductivity. However, GBs could also act as waveguides for selected modes. To measure localized GB phonon modes, milli-electron volt (meV) energy resolution is needed with subnanometer spatial resolution. Using monochromated electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) we have mapped the 60 meV optic mode across GBs in silicon at atomic resolution and compared it to calculated phonon densities of states (DOS). The intensity is strongly reduced at GBs characterized by the presence of 5- and 7-fold rings where bond angles differ from the bulk. The excellent agreement between theory and experiment strongly supports the existence of localized phonon modes and thus of GBs acting as waveguides.

3.
Nano Lett ; 23(3): 1068-1076, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36637381

RESUMEN

The integration of metallic contacts with two-dimensional (2D) semiconductors is routinely required for the fabrication of nanoscale devices. However, nanometer-scale variations in the 2D/metal interface can drastically alter the local optoelectronic properties. Here, we map local excitonic changes of the 2D semiconductor MoS2 in contact with Au. We utilize a suspended and epitaxially grown 2D/metal platform that allows correlated electron energy-loss spectroscopy (EELS) and angle resolved photoelectron spectroscopy (nanoARPES) mapping. Spatial localization of MoS2 excitons uncovers an additional EELS peak related to the MoS2/Au interface. NanoARPES measurements indicate that Au-S hybridization decreases substantially with distance from the 2D/metal interface, suggesting that the observed EELS peak arises due to dielectric screening of the excitonic Coulomb interaction. Our results suggest that increasing the van der Waals distance could optimize excitonic spectra of mixed-dimensional 2D/3D interfaces and highlight opportunities for Coulomb engineering of exciton energies by the local dielectric environment or moiré engineering.

4.
J Am Chem Soc ; 142(30): 12976-12986, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32597176

RESUMEN

Covalent triazine frameworks are an emerging material class that have shown promising performance for a range of applications. In this work, we report on a metal-assisted and solvent-mediated reaction between calcium carbide and cyanuric chloride, as cheap and commercially available precursors, to synthesize two-dimensional triazine structures (2DTSs). The reaction between the solvent, dimethylformamide, and cyanuric chloride was promoted by calcium carbide and resulted in dimethylamino-s-triazine intermediates, which in turn undergo nucleophilic substitutions. This reaction was directed into two dimensions by calcium ions derived from calcium carbide and induced the formation of 2DTSs. The role of calcium ions to direct the two-dimensionality of the final structure was simulated using DFT and further proven by synthesizing molecular intermediates. The water content of the reaction medium was found to be a crucial factor that affected the structure of the products dramatically. While 2DTSs were obtained under anhydrous conditions, a mixture of graphitic material/2DTSs or only graphitic material (GM) was obtained in aqueous solutions. Due to the straightforward and gram-scale synthesis of 2DTSs, as well as their photothermal and photodynamic properties, they are promising materials for a wide range of future applications, including bacteria and virus incapacitation.

5.
Phys Chem Chem Phys ; 21(32): 17662-17672, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31364626

RESUMEN

We apply inline electron holography to investigate the electrostatic potential across an individual BaZr0.9Y0.1O3 grain boundary. With holography, we measure a grain boundary potential of -1.3 V. Electron energy loss spectroscopy analyses indicate that barium vacancies at the grain boundary are the main contributors to the potential well in this sample. Furthermore, geometric phase analysis and density functional theory calculations suggest that reduced atomic density at the grain boundary also contributes to the experimentally measured potential well.

6.
Opt Express ; 26(9): 11819-11833, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29716099

RESUMEN

The transport of intensity equation (TIE) relates the variation of intensity of a wave-front along its mean direction of propagation with its phase. In experimental application, characteristic artefacts may affect the retrieved phase. These originate from inadequacies in estimating the axial derivative and the amplification of noise in the inversion of the TIE. To tackle these issues, images recorded at multiple planes of focus can be integrated into a multi-focus TIE (MFTIE) solution. This methodology relies on the efficient sampling of phase information in the spatial-frequency domain, typically by the definition of band pass filters implemented as a progression of sharp spatial frequency cut-offs. We present a convenient MFTIE implementation which avoids the need for recording images at very specific planes of focus and applies overlapping cut-offs, greatly simplifying the experimental application. This new approach additionally also accounts for partial spatial coherence in a flux-preserving framework. Using simulated data as well as experimental data from optical microscopy and electron microscopy we show that the frequency response of this MFTIE algorithm recovers efficiently a wide range of spatial frequencies of the phase that can be further extended by simple iterative refinement.

9.
Opt Express ; 24(7): 7006-18, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-27136994

RESUMEN

Inverse dynamical photon scattering (IDPS), an artificial neural network based algorithm for three-dimensional quantitative imaging in optical microscopy, is introduced. Because the inverse problem entails numerical minimization of an explicit error metric, it becomes possible to freely choose a more robust metric, to introduce regularization of the solution, and to retrieve unknown experimental settings or microscope values, while the starting guess is simply set to zero. The regularization is accomplished through an alternate directions augmented Lagrangian approach, implemented on a graphics processing unit. These improvements are demonstrated on open source experimental data, retrieving three-dimensional amplitude and phase for a thick specimen.

10.
Phys Rev Lett ; 117(1): 015501, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27419576

RESUMEN

A method for ab initio structure factor retrieval from large-angle rocking-beam electron diffraction data of thin crystals is described and tested with experimental and simulated data. No additional information, such as atomicity or information about chemical composition, has been made use of. Our numerical experiments show that the inversion of dynamical scattering works best, if the beam tilt range is large and the specimen not too thick, because for moderate multiple scattering, the large tilt amplitude effectively removes local minima in this global optimization problem.

11.
Phys Rev Lett ; 110(8): 086106, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23473172

RESUMEN

We have used aberration corrected in situ transmission electron microscopy to study the interface between liquid Al and different sapphire facet planes, including quantitative analysis of the degree of residual contrast delocalization, ensuring that the experimental contrast perturbations can be associated with density perturbations in the liquid. The results confirm that the liquid is ordered at the interface, and the degree of ordering varies as a function of the sapphire facet planes, with a decreasing degree of order according to (0006) >(1210) >(1012) ≥ (1014).


Asunto(s)
Óxido de Aluminio/química , Aluminio/química , Microscopía Electrónica de Transmisión/métodos , Cristalización , Propiedades de Superficie
12.
Ultramicroscopy ; 247: 113701, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36791559

RESUMEN

Solving crystal structures from kinematical X-ray or electron diffraction patterns of single crystals requires many more diffracted beams to be recorded than there are atoms in the structure, since the phases of the structure factors can only be retrieved from such data if the atoms can be resolved as sharply peaked objects. Here a method is presented by which the fact that multiple scattering encodes structure factor phases in the diffracted intensities is being used for solving the crystallographic phase problem. The retrieval of both amplitudes and phases of electron structure factors from diffraction patterns recorded with varying angle of incidence will be demonstrated. No assumption about the scattering potential itself is being made. In particular, the resolution in the diffraction data does not need to be sufficient to resolve atoms, making this method potentially interesting for electron crystallography of 2-dimensional protein crystals and other beam-sensitive complex structures.

13.
ACS Appl Mater Interfaces ; 15(24): 29535-29541, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37278556

RESUMEN

The wide band gap semiconductor κ-Ga2O3 and its aluminum and indium alloys have been proposed as promising materials for many applications. One of them is the use of inter-sub-band transitions in quantum-well (QW) systems for infrared detectors. Our simulations show that the detection wavelength range of nowadays state of the art GaAs/AlxGa1-xAs quantum-well infrared photodetectors (QWIPs) could be substantially excelled with about 1-100 µm using κ-([Al,In]xGa1-x)2O3, while at the same time being transparent to visible light and therefore insensitive to photon noise due to its wide band gap, demonstrating the application potential of this material system. Our simulations further show that the QWIPs efficiency critically depends on the QW thickness, making a precise control over the thickness during growth and a reliable thickness determination essential. We demonstrate that pulsed laser deposition yields the needed accuracy, by analyzing a series of (InxGa1-x)2O3 QWs with (AlyGa1-y)2O3 barriers with high-resolution X-ray diffraction, X-ray photoelectron spectroscopy (XPS) depth profiling, and transmission electron microscopy (TEM). While the superlattice fringes of high-resolution X-ray diffraction only yield an average combined thickness of the QWs and the barrier and X-ray spectroscopy depth profiling requires elaborated modeling of the XPS signal to accurately determine the thickness of such QWs, TEM is the method of choice when it comes to the determination of QW thicknesses.

14.
Sci Rep ; 13(1): 8732, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37253763

RESUMEN

We present a method that lowers the dose required for an electron ptychographic reconstruction by adaptively scanning the specimen, thereby providing the required spatial information redundancy in the regions of highest importance. The proposed method is built upon a deep learning model that is trained by reinforcement learning, using prior knowledge of the specimen structure from training data sets. We show that using adaptive scanning for electron ptychography outperforms alternative low-dose ptychography experiments in terms of reconstruction resolution and quality.

15.
ACS Mater Au ; 3(6): 687-698, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38089654

RESUMEN

Phase segregation in inorganic CsPb(BrxI1-x)3 nanoparticles (NPs) exhibiting originally a homogeneous [Br]:[I] mixture was investigated by means of in situ transmission electron microscopy (TEM) and evaluated by using multivariate analyses. The colloidal synthesis of the NPs offers good control of the halide ratios on the nanoscale. The spatially resolved TEM investigations were correlated with integral photoluminescence measurements. By this approach, the halide-segregation processes and their spatial distributions can be described as being governed by the interaction of three partial processes: electron- and photon-irradiation-induced iodide oxidation, local differences in band gap energy, and intrinsic lattice strain. Since the oxidation can be induced by both electron-beam and light irradiation, both irradiation types can induce phase segregation in CsPb(BrxI1-x)3 compounds. This makes in situ TEM a valuable tool to monitor phase transformation in corresponding NPs and thin films on the sub-nm scale.

16.
Chem Sci ; 14(23): 6269-6277, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37325148

RESUMEN

Graphitic carbon nitrides are covalently-bonded, layered, and crystalline semiconductors with high thermal and oxidative stability. These properties make graphitic carbon nitrides potentially useful in overcoming the limitations of 0D molecular and 1D polymer semiconductors. In this contribution, we study structural, vibrational, electronic and transport properties of nano-crystals of poly(triazine-imide) (PTI) derivatives with intercalated Li- and Br-ions and without intercalates. Intercalation-free poly(triazine-imide) (PTI-IF) is corrugated or AB stacked and partially exfoliated. We find that the lowest energy electronic transition in PTI is forbidden due to a non-bonding uppermost valence band and that its electroluminescence from the π-π* transition is quenched which severely limits their use as emission layer in electroluminescent devices. THz conductivity in nano-crystalline PTI is up to eight orders of magnitude higher than the macroscopic conductivity of PTI films. We find that the charge carrier density of PTI nano-crystals is among the highest of all known intrinsic semiconductors, however, macroscopic charge transport in films of PTI is limited by disorder at crystal-crystal interfaces. Future device applications of PTI will benefit most from single crystal devices that make use of electron transport in the lowest, π-like conduction band.

17.
Phys Rev Lett ; 109(24): 245502, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23368342

RESUMEN

Dynamical scattering of fast electrons can be inverted by recasting the multislice algorithm as an artificial neural network, enabling the iterative retrieval of the three-dimensional object potential. This allows a nonheuristic treatment of the modulation transfer function of the CCD, partial spatial and temporal coherence, and inelastic scattering through an absorptive potential. Furthermore, prior knowledge about the atomic potential shape and the sparseness and positivity of the object can be used. The method is demonstrated on simulated bright field images recorded at 40 kV.

18.
Langmuir ; 28(24): 8867-73, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22440151

RESUMEN

In this paper, we present a systematic investigation of symmetry-breaking in the plasmonic modes of triangular gold nanoprisms. Their geometrical C(3v) symmetry is one of the simplest possible that allows degeneracy in the particle's mode spectrum. It is reduced to the nondegenerate symmetries C(v) or E by positioning additional, smaller gold nanoprisms in close proximity, either in a lateral or a vertical configuration. Corresponding to the lower symmetry of the system, its eigenmodes also feature lower symmetries (C(v)), or preserve only the identity (E) as symmetry. We discuss how breaking the symmetry of the plasmonic system not only breaks the degeneracy of some lower order modes, but also how it alters the damping and eigenenergies of the observed Fano-type resonances.

19.
Microsc Microanal ; 18(3): 509-23, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22494533

RESUMEN

Mineralized dental tissues and dental pulp were characterized using advanced analytical transmission electron microscopy (TEM) methods. Quantitative X-ray energy dispersive spectroscopy was employed to determine the Ca/P and Mg/P concentration ratios. Significantly lower Ca/P concentration ratios were measured in peritubular dentine compared to intertubular dentine, which is accompanied by higher and variable Mg/P concentration ratios. There is strong evidence that magnesium is partially substituting calcium in the hydroxyapatite structure. Electron energy-loss near-edge structures (ELNES) of C-K and O-K from enamel and dentine are noticeably different. We observe a strong influence of beam damage on mineralized dental tissues and dental pulp, causing changes of the composition and consequently also differences in the ELNES. In this article, the importance of TEM sample preparation and specimen damage through electron irradiation is demonstrated.


Asunto(s)
Diente/química , Diente/ultraestructura , Fosfatos de Calcio/análisis , Durapatita/análisis , Humanos , Compuestos de Magnesio/análisis , Microscopía Electrónica de Transmisión , Fosfatos/análisis , Espectrometría por Rayos X
20.
Adv Sci (Weinh) ; 9(22): e2200323, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35665488

RESUMEN

Growing an Inx Ga1- x N/GaN (InGaN/GaN) multi-quantum well (MQW) heterostructure in nanowire (NW) form is expected to overcome limitations inherent in light-emitting diodes (LEDs) based on the conventional planar heterostructure. The epitaxial strain induced in InGaN/GaN MQW heterostructure can be relaxed through the sidewalls of NW, which is beneficial to LEDs because a much larger misfit strain with higher indium concentration can be accommodated with reduced piezoelectric polarization fields. The strain relaxation, however, renders highly complex strain distribution within the NW heterostructure. Here the authors show that complementary strain mapping using scanning transmission electron microscopy and dark-field inline holography can comprehend the strain distribution within the axial In0.3 Ga0.7 N/GaN MQW heterostructure embedded in GaN NW by providing the strain maps which can cover the entire NW and fine details near the sidewalls. With the quantitative evaluation by 3D finite element modelling, it is confirmed that the observed complex strain distribution is induced by the strain relaxation leading to the strain partitioning between InGaN quantum disk, GaN quantum well, and the surrounding epitaxial GaN shell. The authors further show that the strain maps provide the strain tensor components which are crucial for accurate assessment of the strain-induced piezoelectric fields in NW LEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA