Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Chem Rev ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842266

RESUMEN

This roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions. Many of the key phenomena related to the behavior of irradiated systems are very similar and can be understood based on the same fundamental theoretical principles and computational approaches. The multiscale nature of such phenomena requires the quantitative description of the radiation-induced effects occurring at different spatial and temporal scales, ranging from the atomic to the macroscopic, and the interlinks between such descriptions. The multiscale nature of the effects and the similarity of their manifestation in systems of different origins necessarily bring together different disciplines, such as physics, chemistry, biology, materials science, nanoscience, and biomedical research, demonstrating the numerous interlinks and commonalities between them. This research field is highly relevant to many novel and emerging technologies and medical applications.

2.
Phys Chem Chem Phys ; 26(12): 9112-9136, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376461

RESUMEN

We provide an experimentalist's perspective on the present state-of-the-art in the studies of low-energy electron interactions with common radiosensitizers, including compounds used in combined chemo-radiation therapy and their model systems. Low-energy electrons are important secondary species formed during the interaction of ionizing radiation with matter. Their role in the radiation chemistry of living organisms has become an important topic for more than 20 years. With the increasing number of works and reviews in the field, we would like to focus here on a very narrow area of compounds that have been shown to have radio-sensitizing properties on the one hand, and high reactivity towards low-energy electrons on the other hand. Gas phase experiments studying electron attachment to isolated molecules and environmental effects on reaction dynamics are reviewed for modified DNA components, nitroimidazoles, and organometallics. In the end, we provide a perspective on the future directions that may be important for transferring the fundamental knowledge about the processes induced by low-energy electrons into practice in the field of rational design of agents for concomitant chemo-radiation therapy.

3.
Phys Chem Chem Phys ; 25(7): 5361-5371, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36647750

RESUMEN

Cysteine-water cluster cations Cys(H2O)3,6+ and Cys(H2O)3,6H+ are assembled in He droplets and probed by tandem mass spectrometry with collision-induced activation. Benchmark experimental data for this biologically important system are complemented with theory to elucidate the details of the collision-induced activation process. Experimental energy thresholds for successive release of water are compared to water dissociation energies from DFT calculations showing that clusters do not only fragment exclusively by sequential emission of single water molecules but also by the release of small water clusters. Release of clustered water is observed also in the ADMP (atom centered density matrix propagation) molecular dynamics model of small Cys(H2O)3+ and Cys(H2O)3H+ clusters. For large clusters Cys(H2O)6+ and Cys(H2O)6H+ the less computationally demanding statistical Microcanonical Metropolis Monte-Carlo method (M3C) is used to model the experimental fragmentation patterns. We are able to detail the energy redistribution in clusters upon collision activation. In the present case, about two thirds of the collision energy redistribute via an ergodic process, while the remaining one third is transferred into a non-ergodic channel leading to ejection of a single water molecule from the cluster. In contrast to molecular fragmentation, which can be well described by statistical models, modelling of collision-induced activation of weakly bound clusters requires inclusion of non-ergodic processes.

4.
J Phys Chem A ; 127(12): 2731-2741, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36930039

RESUMEN

Details of electron-induced chemistry of methyl methacrylate (MMA) upon complexation are revealed by combining gas-phase 2D electron energy loss spectroscopy with electron attachment spectroscopy of isolated MMA and its clusters. We show that even though isolated MMA does not form stable parent anions, it efficiently thermalizes the incident electrons via intramolecular vibrational redistribution, leading to autodetachment of slow electrons. This autodetachment channel is reduced in clusters due to intermolecular energy transfer and stabilization of parent molecular anions. Bond breaking via dissociative electron attachment leads to an extensive range of anion products. The dominant OCH3- channel is accessible via core-excited resonances with threshold above 5 eV, despite the estimated thermodynamic threshold below 3 eV. This changes in clusters, where MnOCH3- anions are observed in a lower-lying resonance due to neutral dissociation of the 1(n, π*) state and electron self-scavenging. The present findings have implications for electron-induced chemistry in lithography with poly(methyl methacrylate).

5.
Phys Chem Chem Phys ; 24(2): 941-954, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34913940

RESUMEN

We present a combined experimental and theoretical study of the fragmentation of singly and doubly N-methylated glycine (sarcosine and N,N-dimethyl glycine, respectively) induced by low-energy (keV) O6+ ions. Multicoincidence mass spectrometry techniques and quantum chemistry simulations (ab initio molecular dynamics and density functional theory) allow us to characterise different fragmentation pathways as well as the associated mechanisms. We focus on the fragmentation of doubly ionised species, for which coincidence measurements provide unambiguous information on the origin of the various charged fragments. We have found that single N-methylation leads to a larger variety of fragmentation channels than in no methylation of glycine, while double N-methylation effectively closes many of these fragmentation channels, including some of those appearing in pristine glycine. Importantly, the closure of fragmentation channels in the latter case does not imply a protective effect by the methyl group.


Asunto(s)
Glicina/química , Sarcosina/química , Teoría Funcional de la Densidad , Glicina/análogos & derivados , Iones , Metilación , Simulación de Dinámica Molecular
6.
Phys Chem Chem Phys ; 23(38): 21501-21511, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34382983

RESUMEN

Electron attachment and its equivalent in complex environments, single-electron reduction, are important in many biological processes. Here, we experimentally study the electron attachment to favipiravir, a well-known antiviral agent. Electron attachment spectroscopy is used to explore the energetics of associative (AEA) and dissociative (DEA) electron attachment to isolated favipiravir. AEA dominates the interaction and the yields of the fragment anions after DEA are an order of magnitude lower than that of the parent anion. DEA primary proceeds via decomposition of the CONH2 functional group, which is supported by reaction threshold calculations using ab initio methods. Mass spectrometry of small favipiravir-water clusters demonstrates that a lot of energy is transferred to the solvent upon electron attachment. The energy gained upon electron attachment, and the high stability of the parent anion were previously suggested as important properties for the action of several electron-affinic radiosensitizers. If any of these mechanisms cause synergism in chemo-radiation therapy, favipiravir could be repurposed as a radiosensitizer.


Asunto(s)
Amidas , Pirazinas , Amidas/química , Amidas/aislamiento & purificación , Electrones , Pirazinas/química , Pirazinas/aislamiento & purificación , Agua/química
7.
Phys Chem Chem Phys ; 23(5): 3195-3213, 2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33524089

RESUMEN

In this perspective, we review experiments with molecules picked up on large clusters in molecular beams with the focus on the processes in atmospheric and interstellar chemistry. First, we concentrate on the pickup itself, and we discuss the pickup cross sections. We measure the uptake of different atmospheric molecules on mixed nitric acid-water clusters and determine the accommodation coefficients relevant for aerosol formation in the Earth's atmosphere. Then the coagulation of the adsorbed molecules on the clusters is investigated. In the second part of this perspective, we review examples of different processes triggered by UV-photons or electrons in the clusters with embedded molecules. We start with the photodissociation of hydrogen halides and Freon CF2Cl2 on ice nanoparticles in connection with the polar stratospheric ozone depletion. Next, we mention reactions following the excitation and ionization of the molecules adsorbed on clusters. The first ionization-triggered reaction observed between two different molecules picked up on the cluster was the proton transfer between methanol and formic acid deposited on large argon clusters. Finally, negative ion reactions after slow electron attachment are illustrated by two examples: mixed nitric acid-water clusters, and hydrogen peroxide deposited on large ArN and (H2O)N clusters. The selected examples are discussed from the perspective of the atmospheric and interstellar chemistry, and several future directions are proposed.

8.
Phys Chem Chem Phys ; 23(7): 4317-4325, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33587076

RESUMEN

Pyruvic acid represents a key molecule in prebiotic chemistry and it has recently been proposed to be synthesized on interstellar ices. In order to probe the stability of pyruvic acid in the interstellar medium with respect to decomposition by slow electrons, we investigate the electron attachment to its homomolecular and heteromolecular clusters. Using mass spectrometry, we follow the changes in the fragmentation pattern and its dependence on the electron energy for various cluster sizes of pure and microhydrated pyruvic acid. The assignment of fragmentation reaction pathways is supported by ab initio calculations. The fragmentation degree dramatically decreases upon clustering. This decrease is even stronger in the heteromolecular clusters of pyruvic acid with water, where the non-dissociative attachment is by far the strongest channel. In the homomolecular clusters, the dissociative channel leading to dehydrogenation is active over a larger electron energy range than in the isolated molecules. To probe the role of the self-scavenging effects, we explore the excited states of pyruvic acid. This has been done both experimentally, by using electron energy loss spectroscopy, and theoretically, by photochemical calculations. Data on both optically-allowed and forbidden states allow for the explanation of processes emerging upon clustering.

9.
Phys Chem Chem Phys ; 23(33): 18173-18181, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34612280

RESUMEN

We investigate the effect of microhydration on electron attachment to thiophenols with halogen (Br) and nitro (NO2) functional groups in the para position. We focus on the formation of anions upon the attachment of low-energy electrons with energies below 8 eV to heterogeneous clusters of the thiophenols with water. For nitro-thiophenol (NTP), the primary reaction channel observed is the associative electron attachment, irrespective of the microhydration. On the other hand, bromothiophenol (BTP) fragments significantly upon the electron attachment, producing Br- and (BTP-H)- anions. Microhydration suppresses fragmentation of both molecules, however in bromothiophenol, the Br- channel remains intense and Br(H2O)n- hydrated fragment clusters are observed. The results are supported by the reaction energetics obtained from ab initio calculations. Different dissociation dynamics of NTP and BTP can be related to different products of their plasmon induced reactions on Au nanoparticles. Computational modeling of the simplified BTP(H2O) system indicates that the electron attachment products reflect the structure of neutral precursor clusters - the anion dissociation dynamics is controlled by the hydration site.

10.
Phys Chem Chem Phys ; 22(27): 15312-15320, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32627769

RESUMEN

We investigate the ionization induced chemistry of hydrogen peroxide in (H2O2)N clusters generated after the pickup of individual H2O2 molecules on large free ArM, M[combining macron]≈ 160, nanoparticles in molecular beams. Positive and negative ion mass spectra are recorded after an electron ionization of the clusters at energies 5-70 eV and after a slow electron attachment (below 4 eV), respectively. The spectra demonstrate that (H2O2)N clusters with N≥ 20 are formed on argon nanoparticles. This is the first experimental report on hydrogen peroxide clusters in molecular beams. The major negative cluster ion series (H2O2)nO2- indicates O2- ion formation. The dissociative electron attachment to H2O2 molecules in the gas phase yielded only OH- and O- (Nandi et al., Chem. Phys. Lett., 2003, 373, 454). These ions and the series containing them are much less abundant in the clusters. We propose a sequence of ion-molecule and radical reactions to explain the formation of O2-, HO2- and other ions observed in the negatively charged cluster ion series. Since hydrogen peroxide plays an important role in many areas of chemistry from the Earth's atmosphere to biological tissues, our study opens new horizons for experimental investigations of hydrogen peroxide chemistry in complex environments.

11.
J Phys Chem A ; 124(41): 8439-8445, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32931273

RESUMEN

Independently of the preparation method, for cluster cations of aliphatic amino acids, the protonated form MnH+ is always the dominant species. This is a surprising fact considering that in the gas phase, they dissociate primarily by the loss of 45 Da, i.e., the loss of the carboxylic group. In the present study, we explore the dissociation dynamics of small valine cluster cations Mn+ and their protonated counterparts MnH+ via collision-induced dissociation experiments and ab initio calculations with the aim to elucidate the formation of MnH+-type cations from amino acid clusters. For the first time, we report the preparation of valine cluster cations Mn+ in laboratory conditions, using a technique of cluster ion assembly inside He droplets. We show that the Mn+ cations cooled down to He droplet temperature can dissociate to form both Mn-1H+ and [Mn-COOH]+ ions. With increasing internal energy, the Mn-1H+ formation channel becomes dominant. Mn-1H+ ions then fragment nearly exclusively by monomer loss, describing the high abundance of protonated clusters in the mass spectra of amino acid clusters.

12.
J Phys Chem A ; 124(45): 9427-9435, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33125242

RESUMEN

We report a dissociative electron attachment study to 2-furoic acid (C5H4O3) isolated in a gas phase, which is a model molecule consisting of a carboxylic group and a furan ring. Dissociation of furan by low energy electrons is accessible only via electronic excited Feshbach resonances at energies of incident electrons above 5 eV. On the other hand, carboxylic acids are well-known to dissociate via attachment of electrons at subexcitation energies. Here we elucidate how the electron and proton transfer reactions induced by carboxylation influence stability of the furan ring. Overlap of the furan and carboxyl π orbitals results in transformation of the nondissociative π2 resonance of the furan ring to a dissociative resonance. The interpretation of hydrogen transfer reactions is supported by experimental studies of 3-methyl-2-furoic and 5-methyl-2-furoic acids (C6H6O3) and density functional theory (DFT) calculations.

13.
J Chem Phys ; 153(10): 104303, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32933272

RESUMEN

The reduction of 4-nitrothiophenol (NTP) to 4-4'-dimercaptoazobenzene (DMAB) on laser illuminated noble metal nanoparticles is one of the most widely studied plasmon mediated reactions. The reaction is most likely triggered by a transfer of low energy electrons from the nanoparticle to the adsorbed molecules. Besides the formation of DMAB, dissociative side reactions of NTP have also been observed. Here, we present a crossed electron-molecular beam study of free electron attachment to isolated NTP in the gas-phase. Negative ion yields are recorded as a function of the electron energy, which helps to assess the accessibility of single electron reduction pathways after photon induced electron transfer from nanoparticles. The dominant process observed with isolated NTP is associative electron attachment leading to the formation of the parent anion of NTP. Dissociative electron attachment pathways could be revealed with much lower intensities, leading mainly to the loss of functional groups. The energy gained by one electron reduction of NTP may also enhance the desorption of NTP from nanoparticles. Our supporting experiments with small clusters, then, show that further reaction steps are necessary after electron attachment to produce DMAB on the surfaces.

15.
Phys Chem Chem Phys ; 21(26): 13925-13933, 2019 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-30483693

RESUMEN

We ionize small mixed pinene-water clusters by electron impact or by using photons after sodium doping and analyze the products by mass spectrometry. Electron ionization results in the formation of pure pinene, mixed pinene-water and protonated water cluster cations. The "fragmentation free" photoionization after sodium doping results into the formation of only water-Na+ clusters with a mean cluster size below that observed after electron ionization. We show that protonated water clusters are formed both directly and indirectly via pinene ionziation. The latter pathway is detailed by ab intio calculations, demonstrating the feasibility of proton transfer from pinene for larger water clusters. In small clusters, the proton transfer reaction is controlled by proton solvation energy and we can thus estimate its value for finite size clusters. The observed stabilization mechanism of water clusters may contribute to the formation of cloud condensation nuclei in the atmosphere.

16.
J Phys Chem A ; 123(48): 10426-10436, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31725298

RESUMEN

We use a novel technique to solvate silver cations in small clusters of noble gases. The technique involves the formation of large, superfluid helium nanodroplets that are subsequently electron ionized, mass-selected by deflection in an electric field, and doped with silver atoms and noble gases (Ng) in pickup cells. Excess helium is then stripped from the doped nanodroplets by multiple collisions with helium gas at room temperature, producing cluster ions that contain no more than a few dozen noble gas atoms and just a few (or no) silver atoms. Under gentle stripping conditions, helium atoms remain attached to the cluster ions, demonstrating their low vibrational temperature. Under harsher stripping conditions, some of the heavier noble gas atoms will be evaporated as well, thus enriching stable clusters of NgnAgm+ at the expense of less stable ones. This results in local anomalies in the cluster ion abundance, which is measured in a high-resolution time-of-flight mass spectrometer. On the basis of these data, we identify specific "magic" sizes n of particularly stable ions. There is no evidence, however, for enhanced stability of Ng2Ag+, in contrast to the high stability of Ng2Au+ that derives from the covalent nature of the bond for heavy noble gases. "Magic" sizes are also identified for Ag2+ dimer ions complexed with He or Kr. Structural models will be tentatively proposed. A sequence of magic numbers n = 12, 32, and 44, indicative of three concentric solvation shells of icosahedral symmetry, is observed for HenH2O+.

17.
Int J Mol Sci ; 20(18)2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31489947

RESUMEN

We study the reactivity of misonidazole with low-energy electrons in a water environment combining experiment and theoretical modelling. The environment is modelled by sequential hydration of misonidazole clusters in vacuum. The well-defined experimental conditions enable computational modeling of the observed reactions. While the NO 2 - dissociative electron attachment channel is suppressed, as also observed previously for other molecules, the OH - channel remains open. Such behavior is enabled by the high hydration energy of OH - and ring formation in the neutral radical co-fragment. These observations help to understand the mechanism of bio-reductive drug action. Electron-induced formation of covalent bonds is then important not only for biological processes but may find applications also in technology.


Asunto(s)
Electrones , Misonidazol/química , Modelos Moleculares , Modelos Teóricos , Estructura Molecular , Solventes , Análisis Espectral , Agua
18.
Phys Chem Chem Phys ; 19(19): 11753-11758, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28397887

RESUMEN

Polar stratospheric clouds, which consist mainly of nitric acid containing ice particles, play a pivotal role in stratospheric chemistry. We investigate mixed nitric acid-water clusters (HNO3)m(H2O)n, m ≈ 1-6, n ≈ 1-15, in a laboratory molecular beam experiment using electron attachment and mass spectrometry and interpret our experiments using DFT calculations. The reactions are triggered by the attachment of free electrons (0-14 eV) which leads to subsequent intracluster ion-molecule reactions. In these reactions, the nitrate anion NO3- turns out to play the central role. This contradicts the electron attachment to the gas-phase HNO3 molecule, which leads almost exclusively to NO2-. The nitrate containing clusters are formed through at least three different reaction pathways and represent terminal product ions in the reaction cascade initiated by the electron attachment. Besides, the complex reaction pathways represent a new hitherto unrecognized source of atmospherically important OH and HONO molecules.

20.
J Phys Chem A ; 121(5): 1069-1077, 2017 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-28098464

RESUMEN

We generate a molecular beam of ice nanoparticles (H2O)N, N̅ ≈ 130-220, which picks up several individual gas phase uracil (U) or 5-bromouracil (BrU) molecules. The mass spectra of the doped nanoparticles prove that the uracil and bromouracil molecules coagulate to clusters on the ice nanoparticles. Calculations of U and BrU monomers and dimers on the ice nanoparticles provide theoretical support for the cluster formation. The (U)mH+ and (BrU)mH+ intensity dependencies on m extracted from the mass spectra suggest a smaller tendency of BrU to coagulate compared to U, which is substantiated by a lower mobility of bromouracil on the ice surface. The hydrated Um·(H2O)nH+ series are also reported and discussed. On the basis of comparison with the previous experiments, we suggest that the observed propensity for aggregation on ice nanoparticles is a more general trend for biomolecules forming strong hydrogen bonds. This, together with their mobility, leads to their coagulation on ice nanoparticles which is an important aspect for astrochemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA