Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Comput Assist Radiol Surg ; 19(2): 233-240, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37535263

RESUMEN

PURPOSE: The segmentation of the hepatic arteries (HA) is essential for state-of-the-art pre-interventional planning of selective internal radiation therapy (SIRT), a treatment option for malignant tumors in the liver. In SIRT a catheter is placed through the aorta into the tumor-feeding hepatic arteries, injecting small beads filled with radiation emitting material for local radioembolization. In this study, we evaluate the suitability of a deep neural network (DNN) based vessel segmentation for SIRT planning. METHODS: We applied our DNN-based HA segmentation on 36 contrast-enhanced computed tomography (CT) scans from the arterial contrast agent phase and rated its segmentation quality as well as the overall image quality. Additionally, we applied a traditional machine learning algorithm for HA segmentation as comparison to our deep learning (DL) approach. Moreover, we assessed by expert ratings whether the produced HA segmentations can be used for SIRT planning. RESULTS: The DL approach outperformed the traditional machine learning algorithm. The DL segmentation can be used for SIRT planning in [Formula: see text] of the cases, while the reference segmentations, which were manually created by experienced radiographers, are sufficient in [Formula: see text]. Seven DL cases cannot be used for SIRT planning while the corresponding reference segmentations are sufficient. However, there are two DL segmentations usable for SIRT, where the reference segmentations for the same cases were rated as insufficient. CONCLUSIONS: HA segmentation is a difficult and time-consuming task. DL-based methods have the potential to support and accelerate the pre-interventional planning of SIRT therapy.


Asunto(s)
Neoplasias Hepáticas , Redes Neurales de la Computación , Humanos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/radioterapia , Procesamiento de Imagen Asistido por Computador/métodos
2.
Sci Rep ; 12(1): 12262, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35851322

RESUMEN

Automatic liver tumor segmentation can facilitate the planning of liver interventions. For diagnosis of hepatocellular carcinoma, dynamic contrast-enhanced MRI (DCE-MRI) can yield a higher sensitivity than contrast-enhanced CT. However, most studies on automatic liver lesion segmentation have focused on CT. In this study, we present a deep learning-based approach for liver tumor segmentation in the late hepatocellular phase of DCE-MRI, using an anisotropic 3D U-Net architecture and a multi-model training strategy. The 3D architecture improves the segmentation performance compared to a previous study using a 2D U-Net (mean Dice 0.70 vs. 0.65). A further significant improvement is achieved by a multi-model training approach (0.74), which is close to the inter-rater agreement (0.78). A qualitative expert rating of the automatically generated contours confirms the benefit of the multi-model training strategy, with 66 % of contours rated as good or very good, compared to only 43 % when performing a single training. The lesion detection performance with a mean F1-score of 0.59 is inferior to human raters (0.76). Overall, this study shows that correctly detected liver lesions in late-phase DCE-MRI data can be automatically segmented with high accuracy, but the detection, in particular of smaller lesions, can still be improved.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Neoplasias Hepáticas/diagnóstico por imagen , Imagen por Resonancia Magnética , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA