Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 28(1): 88-99, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29222086

RESUMEN

DNA methylation is a well-known epigenetic modification that plays a crucial role in gene regulation, but genome-wide analysis of DNA methylation remains technically challenging and costly. DNA methylation-dependent restriction enzymes can be used to restrict CpG methylation analysis to methylated regions of the genome only, which significantly reduces the required sequencing depth and simplifies subsequent bioinformatics analysis. Unfortunately, this approach has been hampered by complete digestion of DNA in CpG methylation-dense regions, resulting in fragments that are too small for accurate mapping. Here, we show that the activity of DNA methylation-dependent enzyme, LpnPI, is blocked by a fragment size smaller than 32 bp. This unique property prevents complete digestion of methylation-dense DNA and allows accurate genome-wide analysis of CpG methylation at single-nucleotide resolution. Methylated DNA sequencing (MeD-seq) of LpnPI digested fragments revealed highly reproducible genome-wide CpG methylation profiles for >50% of all potentially methylated CpGs, at a sequencing depth less than one-tenth required for whole-genome bisulfite sequencing (WGBS). MeD-seq identified a high number of patient and tissue-specific differential methylated regions (DMRs) and revealed that patient-specific DMRs observed in both blood and buccal samples predict DNA methylation in other tissues and organs. We also observed highly variable DNA methylation at gene promoters on the inactive X Chromosome, indicating tissue-specific and interpatient-specific escape of X Chromosome inactivation. These findings highlight the potential of MeD-seq for high-throughput epigenetic profiling.


Asunto(s)
Cromosomas Humanos X , Islas de CpG , Metilación de ADN/fisiología , Desoxirribonucleasa I/química , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Inactivación del Cromosoma X , Cromosomas Humanos X/química , Cromosomas Humanos X/genética , Cromosomas Humanos X/metabolismo , Femenino , Humanos
2.
Mol Cell ; 47(3): 457-68, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22771117

RESUMEN

In skeletal myogenesis, the transcription factor MyoD activates distinct transcriptional programs in progenitors compared to terminally differentiated cells. Using ChIP-Seq and gene expression analyses, we show that in primary myoblasts, Snail-HDAC1/2 repressive complex binds and excludes MyoD from its targets. Notably, Snail binds E box motifs that are G/C rich in their central dinucleotides, and such sites are almost exclusively associated with genes expressed during differentiation. By contrast, Snail does not bind the A/T-rich E boxes associated with MyoD targets in myoblasts. Thus, Snai1-HDAC1/2 prevent MyoD occupancy on differentiation-specific regulatory elements, and the change from Snail to MyoD binding often results in enhancer switching during differentiation. Furthermore, we show that a regulatory network involving myogenic regulatory factors (MRFs), Snai1/2, miR-30a, and miR-206 acts as a molecular switch that controls entry into myogenic differentiation. Together, these results reveal a regulatory paradigm that directs distinct gene expression programs in progenitors versus terminally differentiated cells.


Asunto(s)
Elementos de Facilitación Genéticos/fisiología , Desarrollo de Músculos/genética , Proteína MioD/metabolismo , Mioblastos Esqueléticos/fisiología , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Diferenciación Celular/genética , Ratones , Datos de Secuencia Molecular , Proteína MioD/química , Proteína MioD/genética , Mioblastos Esqueléticos/citología , Cultivo Primario de Células , Unión Proteica/genética , Factores de Transcripción de la Familia Snail , Factores de Transcripción/química , Factores de Transcripción/genética , Transcripción Genética/fisiología
3.
Genes Dev ; 24(3): 277-89, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20123907

RESUMEN

One of the complexes formed by the hematopoietic transcription factor Gata1 is a complex with the Ldb1 (LIM domain-binding protein 1) and Tal1 proteins. It is known to be important for the development and differentiation of the erythroid cell lineage and is thought to be implicated in long-range interactions. Here, the dynamics of the composition of the complex-in particular, the binding of the negative regulators Eto2 and Mtgr1-are studied, in the context of their genome-wide targets. This shows that the complex acts almost exclusively as an activator, binding a very specific combination of sequences, with a positioning relative to transcription start site, depending on the type of the core promoter. The activation is accompanied by a net decrease in the relative binding of Eto2 and Mtgr1. A Chromosome Conformation Capture sequencing (3C-seq) assay also shows that the binding of the Ldb1 complex marks genomic interaction sites in vivo. This establishes the Ldb1 complex as a positive regulator of the final steps of erythroid differentiation that acts through the shedding of negative regulators and the active interaction between regulatory sequences.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Células Eritroides/citología , Genoma , Animales , Sitios de Unión , Proteínas de Unión al ADN/genética , Células Eritroides/metabolismo , Proteínas con Dominio LIM , Ratones , Regiones Promotoras Genéticas , Factores de Transcripción , Células Tumorales Cultivadas
4.
Hum Mol Genet ; 23(5): 1320-32, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24150847

RESUMEN

Primary open-angle glaucoma (POAG) is a hereditary neurodegenerative disease, characterized by optic nerve changes including increased excavation, notching and optic disc hemorrhages. The excavation can be described by the vertical cup-disc ratio (VCDR). Previously, genome-wide significant evidence for the association of rs10483727 in SIX1-SIX6 locus with VCDR and subsequent POAG was found. Using 1000 genomes-based imputation of four independent population-based cohorts in the Netherlands, we identified a missense variant rs33912345 (His141Asn) in SIX6 associated with VCDR (Pmeta = 7.74 × 10(-7), n = 11 473) and POAG (Pmeta = 6.09 × 10(-3), n = 292). Exome sequencing analysis revealed another missense variant rs146737847 (Glu129Lys) also in SIX6 associated with VCDR (P = 5.09 × 10(-3), n = 1208). These two findings point to SIX6 as the responsible gene for the previously reported association signal. Functional characterization of SIX6 in zebrafish revealed that knockdown of six6b led to a small eye phenotype. Histological analysis showed retinal lamination, implying an apparent normal development of the eye, but an underdeveloped lens, and reduced optic nerve diameter. Expression analysis of morphants at 3 dpf showed a 5.5-fold up-regulation of cdkn2b, a cyclin-dependent kinase inhibitor, involved in cell cycle regulation and previously associated with VCDR and POAG in genome-wide association studies (GWASs). Since both six6b and cdkn2b play a key role in cell proliferation, we assessed the proliferative activity in the eye of morphants and found an alteration in the proliferative pattern of retinal cells. Our findings in humans and zebrafish suggest a functional involvement of six6b in early eye development, and open new insights into the genetic architecture of POAG.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Homeodominio/genética , Degeneración Nerviosa/genética , Nervio Óptico/metabolismo , Nervio Óptico/patología , Transactivadores/genética , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Animales , Proliferación Celular , Mapeo Cromosómico , Exoma , Ojo/embriología , Ojo/metabolismo , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Glaucoma de Ángulo Abierto/genética , Glaucoma de Ángulo Abierto/metabolismo , Glaucoma de Ángulo Abierto/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Homeodominio/metabolismo , Humanos , Persona de Mediana Edad , Modelos Biológicos , Organogénesis/genética , Fenotipo , Sitios de Carácter Cuantitativo , Transactivadores/metabolismo , Adulto Joven , Pez Cebra
5.
EMBO J ; 31(4): 986-99, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22157820

RESUMEN

The key haematopoietic regulator Myb is essential for coordinating proliferation and differentiation. ChIP-Sequencing and Chromosome Conformation Capture (3C)-Sequencing were used to characterize the structural and protein-binding dynamics of the Myb locus during erythroid differentiation. In proliferating cells expressing Myb, enhancers within the Myb-Hbs1l intergenic region were shown to form an active chromatin hub (ACH) containing the Myb promoter and first intron. This first intron was found to harbour the transition site from transcription initiation to elongation, which takes place around a conserved CTCF site. Upon erythroid differentiation, Myb expression is downregulated and the ACH destabilized. We propose a model for Myb activation by distal enhancers dynamically bound by KLF1 and the GATA1/TAL1/LDB1 complex, which primarily function as a transcription elongation element through chromatin looping.


Asunto(s)
Cromatina/metabolismo , Eritrocitos/metabolismo , Proteínas Proto-Oncogénicas c-myb/genética , Transcripción Genética , Inmunoprecipitación de Cromatina , Humanos , Proto-Oncogenes Mas
6.
Genome Res ; 23(11): 1938-50, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24002785

RESUMEN

Spatiotemporal control of gene expression is central to animal development. Core promoters represent a previously unanticipated regulatory level by interacting with cis-regulatory elements and transcription initiation in different physiological and developmental contexts. Here, we provide a first and comprehensive description of the core promoter repertoire and its dynamic use during the development of a vertebrate embryo. By using cap analysis of gene expression (CAGE), we mapped transcription initiation events at single nucleotide resolution across 12 stages of zebrafish development. These CAGE-based transcriptome maps reveal genome-wide rules of core promoter usage, structure, and dynamics, key to understanding the control of gene regulation during vertebrate ontogeny. They revealed the existence of multiple classes of pervasive intra- and intergenic post-transcriptionally processed RNA products and their developmental dynamics. Among these RNAs, we report splice donor site-associated intronic RNA (sRNA) to be specific to genes of the splicing machinery. For the identification of conserved features, we compared the zebrafish data sets to the first CAGE promoter map of Tetraodon and the existing human CAGE data. We show that a number of features, such as promoter type, newly discovered promoter properties such as a specialized purine-rich initiator motif, as well as sRNAs and the genes in which they are detected, are conserved in mammalian and Tetraodon CAGE-defined promoter maps. The zebrafish developmental promoterome represents a powerful resource for studying developmental gene regulation and revealing promoter features shared across vertebrates.


Asunto(s)
Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Purinas/metabolismo , Sitio de Iniciación de la Transcripción , Pez Cebra/embriología , Pez Cebra/genética , Animales , Evolución Molecular , Perfilación de la Expresión Génica , Genes , Genoma , Filogenia , Regiones Promotoras Genéticas , ARN/genética , ARN/metabolismo , Caperuzas de ARN/genética , Empalme del ARN , Transcriptoma , Vertebrados/genética
7.
BMC Med Genet ; 16: 10, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25927202

RESUMEN

BACKGROUND: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations in TSC1 and TSC2. Conventional DNA diagnostic screens identify a TSC1 or TSC2 mutation in 75 - 90% of individuals categorised with definite TSC. The remaining individuals either have a mutation that is undetectable using conventional methods, or possibly a mutation in another as yet unidentified gene. METHODS: Here we apply a targeted Next Generation Sequencing (NGS) approach to screen the complete TSC1 and TSC2 genomic loci in 7 individuals fulfilling the clinical diagnostic criteria for definite TSC in whom no TSC1 or TSC2 mutations were identified using conventional screening methods. RESULTS: We identified and confirmed pathogenic mutations in 3 individuals. In the remaining individuals we identified variants of uncertain clinical significance. The identified variants included mosaic changes, changes located deep in intronic sequences and changes affecting promoter regions that would not have been identified using exon-only based analyses. CONCLUSIONS: Targeted NGS of the TSC1 and TSC2 loci is a suitable method to increase the yield of mutations identified in the TSC patient population.


Asunto(s)
Análisis Mutacional de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Proteínas Supresoras de Tumor/genética , Adolescente , Niño , Sitios Genéticos/genética , Genómica , Humanos , Persona de Mediana Edad , Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa
8.
Blood ; 121(15): 2902-13, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23390196

RESUMEN

The first site exhibiting hematopoietic activity in mammalian development is the yolk-sac blood island, which originates from the hemangioblast. Here we performed differentiation assays, as well as genome-wide molecular and functional studies in blast colony-forming cells to gain insight into the function of the essential Ldb1 factor in early primitive hematopoietic development. We show that the previously reported lack of yolk-sac hematopoiesis and vascular development in Ldb1(-/-) mouse result from a decreased number of hemangioblasts and a block in their ability to differentiate into erythroid and endothelial progenitor cells. Transcriptome analysis and correlation with the genome-wide binding pattern of Ldb1 in hemangioblasts revealed a number of direct-target genes and pathways misregulated in the absence of Ldb1. The regulation of essential developmental factors by Ldb1 defines it as an upstream transcriptional regulator of hematopoietic/endothelial development. We show the complex interplay that exists between transcription factors and signaling pathways during the very early stages of hematopoietic/endothelial development and the specific signaling occurring in hemangioblasts in contrast to more advanced hematopoietic developmental stages. Finally, by revealing novel genes and pathways not previously associated with early development, our study provides novel candidate targets to manipulate the differentiation of hematopoietic and/or endothelial cells.


Asunto(s)
Proteínas de Unión al ADN/genética , Hematopoyesis/genética , Proteínas con Dominio LIM/genética , Transducción de Señal/genética , Saco Vitelino/metabolismo , Animales , Diferenciación Celular/genética , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genoma/genética , Hemangioblastos/citología , Hemangioblastos/metabolismo , Sistema Hematopoyético/irrigación sanguínea , Sistema Hematopoyético/embriología , Sistema Hematopoyético/metabolismo , Proteínas con Dominio LIM/metabolismo , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saco Vitelino/irrigación sanguínea , Saco Vitelino/embriología
9.
RNA Biol ; 12(1): 30-42, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25826412

RESUMEN

Current RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species in an unperturbed manner. We report strand-specific RNAome sequencing that determines expression of small and large RNAs from rRNA-depleted total RNA in a single sequence run. Since current analysis pipelines cannot reliably analyze small and large RNAs simultaneously, we developed TRAP, Total Rna Analysis Pipeline, a robust interface that is also compatible with existing RNA sequencing protocols. RNAome sequencing quantitatively preserved all RNA classes, allowing cross-class comparisons that facilitates the identification of relationships between different RNA classes. We demonstrate the strength of RNAome sequencing in mouse embryonic stem cells treated with cisplatin. MicroRNA and mRNA expression in RNAome sequencing significantly correlated between replicates and was in concordance with both existing RNA sequencing methods and gene expression arrays generated from the same samples. Moreover, RNAome sequencing also detected additional RNA classes such as enhancer RNAs, anti-sense RNAs, novel RNA species and numerous differentially expressed RNAs undetectable by other methods. At the level of complete RNA classes, RNAome sequencing also identified a specific global repression of the microRNA and microRNA isoform classes after cisplatin treatment whereas all other classes such as mRNAs were unchanged. These characteristics of RNAome sequencing will significantly improve expression analysis as well as studies on RNA biology not covered by existing methods.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN/metabolismo , Análisis de Secuencia de ARN/métodos , Transcriptoma , Animales , Humanos , Ratones
10.
Mod Pathol ; 27(10): 1321-30, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24633195

RESUMEN

Uveal melanoma is a lethal cancer with a strong propensity to metastasize. Limited therapeutic options are available once the disease has disseminated. A strong predictor for metastasis is the loss of chromosome 3. Inactivating mutations in BAP1 encoding the BRCA1-associated protein 1 and located on chromosome 3p21.1, have been described in uveal melanoma and other types of cancer. In this study, we determined the prevalence of somatic BAP1 mutations and examined whether these mutations correlate with the functional expression of BAP1 in uveal melanoma tissue and with other clinical, histopathological and chromosomal parameters. We screened a cohort of 74 uveal melanomas for BAP1 mutations, using different deep sequencing methods. The frequency of BAP1 mutations in our study group was 47%. The expression of BAP1 protein was studied using immunohistochemistry. BAP1 staining was absent in 43% of the cases. BAP1 mutation status was strongly associated with BAP1 protein expression (P<0.001), loss of chromosome 3 (P<0.001), and other aggressive prognostic factors. Patients with a BAP1 mutation and absent BAP1 expression had an almost eightfold higher chance of developing metastases compared with those without these changes (P=0.002). We found a strong correlation between the immunohistochemical and sequencing data and therefore propose that, immunohistochemical screening for BAP1 should become routine in the histopathological work-up of uveal melanoma. Furthermore, our analysis indicates that loss of BAP1 may be particularly involved in the progression of uveal melanoma to an aggressive, metastatic phenotype.


Asunto(s)
Biomarcadores de Tumor/genética , Inmunohistoquímica , Melanoma/genética , Mutación , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética , Neoplasias de la Úvea/genética , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/análisis , Análisis Mutacional de ADN , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hibridación Fluorescente in Situ , Estimación de Kaplan-Meier , Masculino , Melanoma/mortalidad , Melanoma/patología , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias de la Úvea/mortalidad , Neoplasias de la Úvea/patología
11.
Nat Protoc ; 13(3): 459-477, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29419817

RESUMEN

Chromosome conformation capture (3C) and its derivatives (e.g., 4C, 5C and Hi-C) are used to analyze the 3D organization of genomes. We recently developed targeted chromatin capture (T2C), an inexpensive method for studying the 3D organization of genomes, interactomes and structural changes associated with gene regulation, the cell cycle, and cell survival and development. Here, we present the protocol for T2C based on capture, describing all experimental steps and bio-informatic tools in full detail. T2C offers high resolution, a large dynamic interaction frequency range and a high signal-to-noise ratio. Its resolution is determined by the resulting fragment size of the chosen restriction enzyme, which can lead to sub-kilobase-pair resolution. T2C's high coverage allows the identification of the interactome of each individual DNA fragment, which makes binning of reads (often used in other methods) basically unnecessary. Notably, T2C requires low sequencing efforts. T2C also allows multiplexing of samples for the direct comparison of multiple samples. It can be used to study topologically associating domains (TADs), determining their position, shape, boundaries, and intra- and inter-domain interactions, as well as the composition of aggregated loops, interactions between nucleosomes, individual transcription factor binding sites, and promoters and enhancers. T2C can be performed by any investigator with basic skills in molecular biology techniques in ∼7-8 d. Data analysis requires basic expertise in bioinformatics and in Linux and Python environments.


Asunto(s)
Biología Computacional/métodos , Mapeo Físico de Cromosoma/métodos , Análisis de Secuencia de ADN/métodos , Animales , Cromatina/ultraestructura , Ensamble y Desensamble de Cromatina/fisiología , Mapeo Cromosómico/métodos , ADN , Regulación de la Expresión Génica , Genoma/genética , Genoma Humano/genética , Genoma Humano/fisiología , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Ratones , Nucleosomas , Programas Informáticos
12.
Biomed Res Int ; 2018: 9425843, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29607327

RESUMEN

Neonatal hyperbilirubinemia (NH) is a common finding in newborn babies in Indonesia. Common and rare variants of UGT1A1 have been known to contribute to NH etiology. This study aims to identify UGT1A1 genetic variation and haplotype associated with NH in Indonesian population. DNA was isolated from 116 cases and 115 controls and a targeted-deep sequencing approach was performed on the promoter, UTRs, and exonic regions of UGT1A1. Determining association of common variants and haplotype analysis were performed using PLINK and Haploview. Ten and 4 rare variants were identified in cases and controls, respectively. The UGT1A1 rare variants frequency in cases (5.17%) was higher than that in controls (1.7%). Four of those rare variants in cases (p.Ala61Thr, p.His300Arg, p.Lys407Asn, and p.Tyr514Asn) and three in controls (p.Tyr79X, p.Ala346Val, and p.Thr412Ser) are novel variants. The frequencies of p.Gly71Arg, p.Pro229Gln, and TA7 common variants were not significantly different between cases and controls. A haplotype, consisting of 3 major alleles of 3' UTRs common variants (rs8330C>G, rs10929303C>T, and rs1042640C>G), was associated with NH incidence (p = 0.025) in this population. Using targeted-deep sequencing and haplotype analysis, we identified novel UGT1A1 rare variants and disease-associated haplotype in NH in Indonesian population.


Asunto(s)
Alelos , Variación Genética , Glucuronosiltransferasa/genética , Haplotipos , Hiperbilirrubinemia Neonatal/genética , Regiones no Traducidas 3' , Exones , Femenino , Humanos , Hiperbilirrubinemia Neonatal/epidemiología , Indonesia/epidemiología , Masculino , Regiones Promotoras Genéticas
13.
Front Microbiol ; 7: 1701, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27833597

RESUMEN

Mycoplasma pneumoniae is a common cause of respiratory tract infections (RTIs) in children. We recently demonstrated that this bacterium can be carried asymptomatically in the respiratory tract of children. To identify potential genetic differences between M. pneumoniae strains that are carried asymptomatically and those that cause symptomatic infections, we performed whole-genome sequence analysis of 20 M. pneumoniae strains. The analyzed strains included 3 reference strains, 3 strains isolated from asymptomatic children, 13 strains isolated from clinically well-defined patients suffering from an upper (n = 4) or lower (n = 9) RTI, and one strain isolated from a follow-up patient who recently recovered from an RTI. The obtained sequences were each compared to the sequences of the reference strains. To find differences between strains isolated from asymptomatic and symptomatic individuals, a variant comparison was performed between the different groups of strains. Irrespective of the group (asymptomatic vs. symptomatic) from which the strains originated, subtype 1 and subtype 2 strains formed separate clusters. We could not identify a specific genotype associated with M. pneumoniae virulence. However, we found marked genetic differences between clinical isolates and the reference strains, which indicated that the latter strains may not be regarded as appropriate representatives of circulating M. pneumoniae strains.

14.
Artículo en Inglés | MEDLINE | ID: mdl-28035242

RESUMEN

BACKGROUND: The dynamic three-dimensional chromatin architecture of genomes and its co-evolutionary connection to its function-the storage, expression, and replication of genetic information-is still one of the central issues in biology. Here, we describe the much debated 3D architecture of the human and mouse genomes from the nucleosomal to the megabase pair level by a novel approach combining selective high-throughput high-resolution chromosomal interaction capture (T2C), polymer simulations, and scaling analysis of the 3D architecture and the DNA sequence. RESULTS: The genome is compacted into a chromatin quasi-fibre with ~5 ± 1 nucleosomes/11 nm, folded into stable ~30-100 kbp loops forming stable loop aggregates/rosettes connected by similar sized linkers. Minor but significant variations in the architecture are seen between cell types and functional states. The architecture and the DNA sequence show very similar fine-structured multi-scaling behaviour confirming their co-evolution and the above. CONCLUSIONS: This architecture, its dynamics, and accessibility, balance stability and flexibility ensuring genome integrity and variation enabling gene expression/regulation by self-organization of (in)active units already in proximity. Our results agree with the heuristics of the field and allow "architectural sequencing" at a genome mechanics level to understand the inseparable systems genomic properties.

15.
Methods Mol Biol ; 1226: 71-85, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25331044

RESUMEN

In recent years, microRNAs (miRNA) have been demonstrated to be present in body fluids and may therefore serve as diagnostic markers for diseases. By characterizing miRNA profiles in plasma, a miRNA signature may potentially be developed as a diagnostic and risk assessment tool for particular (patho)physiological states. This chapter describes the isolation, purification, identification, and sequencing of human plasma miRNAs.


Asunto(s)
MicroARNs , Análisis de Secuencia de ARN/métodos , Humanos , MicroARNs/sangre , MicroARNs/genética , MicroARNs/aislamiento & purificación
16.
Nat Commun ; 6: 8893, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26593974

RESUMEN

How transcription factors (TFs) cooperate within large protein complexes to allow rapid modulation of gene expression during development is still largely unknown. Here we show that the key haematopoietic LIM-domain-binding protein-1 (LDB1) TF complex contains several activator and repressor components that together maintain an erythroid-specific gene expression programme primed for rapid activation until differentiation is induced. A combination of proteomics, functional genomics and in vivo studies presented here identifies known and novel co-repressors, most notably the ETO2 and IRF2BP2 proteins, involved in maintaining this primed state. The ETO2-IRF2BP2 axis, interacting with the NCOR1/SMRT co-repressor complex, suppresses the expression of the vast majority of archetypical erythroid genes and pathways until its decommissioning at the onset of terminal erythroid differentiation. Our experiments demonstrate that multimeric regulatory complexes feature a dynamic interplay between activating and repressing components that determines lineage-specific gene expression and cellular differentiation.


Asunto(s)
Proteínas Portadoras/metabolismo , Células Eritroides/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas Portadoras/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Eritroides/citología , Eritropoyesis , Humanos , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Ratones , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 2 de Receptor Nuclear/genética , Co-Represor 2 de Receptor Nuclear/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética
17.
Nat Commun ; 6: 7155, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25990348

RESUMEN

The locations of transcriptional enhancers and promoters were recently mapped in many mammalian cell types. Proteins that bind those regulatory regions can determine cell identity but have not been systematically identified. Here we purify native enhancers, promoters or heterochromatin from embryonic stem cells by chromatin immunoprecipitations (ChIP) for characteristic histone modifications and identify associated proteins using mass spectrometry (MS). 239 factors are identified and predicted to bind enhancers or promoters with different levels of activity, or heterochromatin. Published genome-wide data indicate a high accuracy of location prediction by ChIP-MS. A quarter of the identified factors are important for pluripotency and includes Oct4, Esrrb, Klf5, Mycn and Dppa2, factors that drive reprogramming to pluripotent stem cells. We determined the genome-wide binding sites of Dppa2 and find that Dppa2 operates outside the classical pluripotency network. Our ChIP-MS method provides a detailed read-out of the transcriptional landscape representative of the investigated cell type.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Histonas/química , Animales , Sitios de Unión , Dominio Catalítico , Células Madre Embrionarias/citología , Elementos de Facilitación Genéticos , Genoma , Código de Histonas , Factores de Transcripción de Tipo Kruppel/química , Espectrometría de Masas/métodos , Ratones , Proteína Proto-Oncogénica N-Myc , Proteínas Nucleares/química , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas/química , Receptores de Estrógenos/química , Secuencias Reguladoras de Ácidos Nucleicos , Reproducibilidad de los Resultados , Factores de Transcripción
18.
Eur J Hum Genet ; 23(9): 1142-50, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25626705

RESUMEN

Implementation of next-generation DNA sequencing (NGS) technology into routine diagnostic genome care requires strategic choices. Instead of theoretical discussions on the consequences of such choices, we compared NGS-based diagnostic practices in eight clinical genetic centers in the Netherlands, based on genetic testing of nine pre-selected patients with cardiomyopathy. We highlight critical implementation choices, including the specific contributions of laboratory and medical specialists, bioinformaticians and researchers to diagnostic genome care, and how these affect interpretation and reporting of variants. Reported pathogenic mutations were consistent for all but one patient. Of the two centers that were inconsistent in their diagnosis, one reported to have found 'no causal variant', thereby underdiagnosing this patient. The other provided an alternative diagnosis, identifying another variant as causal than the other centers. Ethical and legal analysis showed that informed consent procedures in all centers were generally adequate for diagnostic NGS applications that target a limited set of genes, but not for exome- and genome-based diagnosis. We propose changes to further improve and align these procedures, taking into account the blurring boundary between diagnostics and research, and specific counseling options for exome- and genome-based diagnostics. We conclude that alternative diagnoses may infer a certain level of 'greediness' to come to a positive diagnosis in interpreting sequencing results. Moreover, there is an increasing interdependence of clinic, diagnostics and research departments for comprehensive diagnostic genome care. Therefore, we invite clinical geneticists, physicians, researchers, bioinformatics experts and patients to reconsider their role and position in future diagnostic genome care.


Asunto(s)
Cardiomiopatías/diagnóstico , Pruebas Genéticas/normas , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Mutación , Proteínas de Unión al Calcio/genética , Miosinas Cardíacas/genética , Cardiomiopatías/genética , Proteínas Portadoras/genética , Exoma , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Consentimiento Informado/legislación & jurisprudencia , Ensayos de Aptitud de Laboratorios/estadística & datos numéricos , Quinasas Quinasa Quinasa PAM/genética , Cadenas Pesadas de Miosina/genética , Países Bajos , Proteínas Serina-Treonina Quinasas
19.
Artículo en Inglés | MEDLINE | ID: mdl-25031611

RESUMEN

BACKGROUND: Significant efforts have recently been put into the investigation of the spatial organization and the chromatin-interaction networks of genomes. Chromosome conformation capture (3C) technology and its derivatives are important tools used in this effort. However, many of these have limitations, such as being limited to one viewpoint, expensive with moderate to low resolution, and/or requiring a large sequencing effort. Techniques like Hi-C provide a genome-wide analysis. However, it requires massive sequencing effort with considerable costs. Here we describe a new technique termed Targeted Chromatin Capture (T2C), to interrogate large selected regions of the genome. T2C provides an unbiased view of the spatial organization of selected loci at superior resolution (single restriction fragment resolution, from 2 to 6 kbp) at much lower costs than Hi-C due to the lower sequencing effort. RESULTS: We applied T2C on well-known model regions, the mouse ß-globin locus and the human H19/IGF2 locus. In both cases we identified all known chromatin interactions. Furthermore, we compared the human H19/IGF2 locus data obtained from different chromatin conformation capturing methods with T2C data. We observed the same compartmentalization of the locus, but at a much higher resolution (single restriction fragments vs. the common 40 kbp bins) and higher coverage. Moreover, we compared the ß-globin locus in two different biological samples (mouse primary erythroid cells and mouse fetal brain), where it is either actively transcribed or not, to identify possible transcriptional dependent interactions. We identified the known interactions in the ß-globin locus and the same topological domains in both mouse primary erythroid cells and in mouse fetal brain with the latter having fewer interactions probably due to the inactivity of the locus. Furthermore, we show that interactions due to the important chromatin proteins, Ldb1 and Ctcf, in both tissues can be analyzed easily to reveal their role on transcriptional interactions and genome folding. CONCLUSIONS: T2C is an efficient, easy, and affordable with high (restriction fragment) resolution tool to address both genome compartmentalization and chromatin-interaction networks for specific genomic regions at high resolution for both clinical and non-clinical research.

20.
Nat Protoc ; 8(3): 509-24, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23411633

RESUMEN

Chromosome conformation capture (3C) technology is a powerful and increasingly popular tool for analyzing the spatial organization of genomes. Several 3C variants have been developed (e.g., 4C, 5C, ChIA-PET, Hi-C), allowing large-scale mapping of long-range genomic interactions. Here we describe multiplexed 3C sequencing (3C-seq), a 4C variant coupled to next-generation sequencing, allowing genome-scale detection of long-range interactions with candidate regions. Compared with several other available techniques, 3C-seq offers a superior resolution (typically single restriction fragment resolution; approximately 1-8 kb on average) and can be applied in a semi-high-throughput fashion. It allows the assessment of long-range interactions of up to 192 genes or regions of interest in parallel by multiplexing library sequencing. This renders multiplexed 3C-seq an inexpensive, quick (total hands-on time of 2 weeks) and efficient method that is ideal for the in-depth analysis of complex genetic loci. The preparation of multiplexed 3C-seq libraries can be performed by any investigator with basic skills in molecular biology techniques. Data analysis requires basic expertise in bioinformatics and in Linux and Python environments. The protocol describes all materials, critical steps and bioinformatics tools required for successful application of 3C-seq technology.


Asunto(s)
Cromatina/metabolismo , Mapeo Cromosómico/métodos , Animales , Línea Celular , Cromatina/química , Cromosomas/química , Cromosomas/metabolismo , Biología Computacional , Formaldehído/química , Biblioteca Genómica , Genómica/métodos , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA