Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Opin Clin Nutr Metab Care ; 25(5): 354-359, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35838297

RESUMEN

PURPOSE OF REVIEW: The rise in fructose consumption in parallel with the current epidemic of obesity and related cardiometabolic disease requires a better understanding of the pathophysiological pathways that are involved. RECENT FINDINGS: Animal studies have shown that fructose has various effects on the intestines that subsequently affect intrahepatic lipid accumulation and inflammation. Fructose adversely affects the gut microbiome - as a producer of endotoxins and intermediates of de novo lipogenesis - and intestinal barrier function. Furthermore, intestinal fructose metabolism shields fructose away from the liver. Finally, fructose 1-phosphate (F1-P) serves as a signal molecule that promotes intestinal cell survival and, consequently, intestinal absorption capacity. Intervention and epidemiological studies have convincingly shown that fructose, particularly derived from sugar-sweetened beverages, stimulates de novo lipogenesis and intrahepatic lipid accumulation in humans. Of interest, individuals with aldolase B deficiency, who accumulate F1-P, are characterized by a greater intrahepatic lipid content. First phase II clinical trials have recently shown that reduction of F1-P, by inhibition of ketohexokinase, reduces intrahepatic lipid content. SUMMARY: Experimental evidence supports current measures to reduce fructose intake, for example by the implementation of a tax on sugar-sweetened beverages, and pharmacological inhibition of fructose metabolism to reduce the global burden of cardiometabolic disease.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad del Hígado Graso no Alcohólico , Animales , Enfermedades Cardiovasculares/metabolismo , Fructosa/efectos adversos , Fructosa/metabolismo , Humanos , Intestinos , Metabolismo de los Lípidos , Lípidos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo
2.
Cells ; 11(21)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36359877

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a devastating lung disease primarily caused by exposure to cigarette smoke (CS). During the pyrolysis and combustion of tobacco, reactive aldehydes such as acetaldehyde, acrolein, and formaldehyde are formed, which are known to be involved in respiratory toxicity. Although CS-induced mitochondrial dysfunction has been implicated in the pathophysiology of COPD, the role of aldehydes therein is incompletely understood. To investigate this, we used a physiologically relevant in vitro exposure model of differentiated human primary bronchial epithelial cells (PBEC) exposed to CS (one cigarette) or a mixture of acetaldehyde, acrolein, and formaldehyde (at relevant concentrations of one cigarette) or air, in a continuous flow system using a puff-like exposure protocol. Exposure of PBEC to CS resulted in elevated IL-8 cytokine and mRNA levels, increased abundance of constituents associated with autophagy, decreased protein levels of molecules associated with the mitophagy machinery, and alterations in the abundance of regulators of mitochondrial biogenesis. Furthermore, decreased transcript levels of basal epithelial cell marker KRT5 were reported after CS exposure. Only parts of these changes were replicated in PBEC upon exposure to a combination of acetaldehyde, acrolein, and formaldehyde. More specifically, aldehydes decreased MAP1LC3A mRNA (autophagy) and BNIP3 protein (mitophagy) and increased ESRRA protein (mitochondrial biogenesis). These data suggest that other compounds in addition to aldehydes in CS contribute to CS-induced dysregulation of constituents controlling mitochondrial content and function in airway epithelial cells.


Asunto(s)
Aldehídos , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Aldehídos/metabolismo , Acroleína/toxicidad , Acroleína/metabolismo , Células Epiteliales/metabolismo , Mitocondrias/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Acetaldehído/toxicidad , Acetaldehído/metabolismo , Nicotiana , Formaldehído , ARN Mensajero/metabolismo , Fumar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA