Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Phys Chem Chem Phys ; 23(41): 23466-23472, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34643197

RESUMEN

A better understanding of the aggregation states of polymer chains in thin films is of pivotal importance for developing thin film polymer devices in addition to its inherent scientific interest. Here we report the preferential orientation of the crystalline lamellae for isotactic polypropylene (iPP) in spin-coated films by grazing incidence of wide-angle X-ray diffraction in conjunction with sum frequency generation vibrational spectroscopy, which provides information on the local conformation of chains at crystal/amorphous interfaces buried in a thin film. The crystalline orientation of iPP, which formed cross-hatched lamellae induced by lamellar branching, altered from a mixture of edge-on and face-on mother lamellae to preferential face-on mother lamellae with decreasing thickness. The orientation of methyl groups at the crystal/amorphous interfaces in the interior region of the iPP films changed, accompanied by a change in the lamellar orientation.

2.
Langmuir ; 34(14): 4199-4209, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29528230

RESUMEN

The glass transition of supported polystyrene (PS) and poly(2-vinylpyridine) (P2VP) thin films in the vicinity of the substrate interface was studied by using a nanoplasmonic sensing (NPS) method. This "nanocalorimetric" approach utilizes localized surface plasmon resonance from two-dimensional arrangements of sensor nanoparticles deposited on SiO2-coated glass substrates. The NPS results demonstrated the existence of a high glass transition temperature ( Tg,high) along with the bulk glass transition temperature ( Tg,bulk ≈ 100 °C for PS and P2VP) within the thin films: Tg,high ≈ 160 °C for PS and Tg,high ≈ 200 °C for P2VP. To understand the origin of the Tg,high, we also studied the thermal transitions of lone polymer chains strongly adsorbed onto the substrate surface using solvent rinsing. Interestingly, the NPS data indicated that the Tg,high is attributed to the adsorbed polymer chains. To provide a better understanding of the mechanism of the Tg,high, molecular dynamics simulations were performed on a PS film adsorbed on hydrophobic and hydrophilic substrates. The simulation results illuminated the presence of a higher density region closest to the substrate surface regardless of the magnitude of the polymer-solid interactions. We postulate that the highly packed chain conformation reduces the free volume at the substrate interface, resulting in the Tg,high. Moreover, the simulation results revealed that the deviation of the Tg,high from the bulk Tg,bulk becomes larger as the polymer-substrate interaction increases, which is in line with the experimental findings.

3.
Soft Matter ; 14(7): 1108-1119, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29340434

RESUMEN

Here we report a link between the interfacial structure and adhesive property of homopolymer chains physically adsorbed (i.e., via physisorption) onto solids. Polyethylene oxide (PEO) was used as a model and two different chain conformations of the adsorbed polymer were created on silicon substrates via the well-established Guiselin's approach: "flattened chains" which lie flat on the solid and are densely packed, and "loosely adsorbed polymer chains" which form bridges jointing up nearby empty sites on the solid surface and cover the flattened chains. We investigated the adhesion properties of the two different adsorbed chains using a custom-built adhesion testing device. Bilayers of a thick PEO overlayer on top of the flattened chains or loosely adsorbed chains were subjected to the adhesion test. The results revealed that the flattened chains do not show any adhesion even with the chemically identical free polymer on top, while the loosely adsorbed chains exhibit adhesion. Neutron reflectivity experiments corroborated that the difference in the interfacial adhesion is not attributed to the interfacial brodening at the free polymer-adsorbed polymer interface. Instead, coarse-grained molecular dynamics simulation results suggest that the tail parts of the loosely adsorbed chains act as "connector molecules", bridging the free chains and substrate surface and improving the interfacial adhesion. These findings not only shed light on the structure-property relationship at the interface, but also provide a novel approach for developing sticking/anti-sticking technologies through precise control of the interfacial polymer nanostructures.

4.
J Am Chem Soc ; 139(44): 15977-15983, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29043793

RESUMEN

Combining monodisperse building blocks that have distinct folding properties serves as a modular strategy for controlling structural complexity in hierarchically organized materials. We combine an α-helical bundle-forming peptide with self-assembling dendrons to better control the arrangement of functional groups within cylindrical nanostructures. Site-specific grafting of dendrons to amino acid residues on the exterior of the α-helical bundle yields monodisperse macromolecules with programmable folding and self-assembly properties. The resulting hybrid biomaterials form thermotropic columnar hexagonal mesophases in which the peptides adopt an α-helical conformation. Bundling of the α-helical peptides accompanies self-assembly of the peptide-dendron hybrids into cylindrical nanostructures. The bundle stoichiometry in the mesophase agrees well with the size found in solution for α-helical bundles of peptides with a similar amino acid sequence.


Asunto(s)
Dendrímeros/química , Nanoestructuras/química , Péptidos/química , Dendrímeros/síntesis química , Cristales Líquidos/química , Modelos Moleculares , Péptidos/síntesis química , Conformación Proteica en Hélice alfa
5.
Langmuir ; 32(42): 10851-10860, 2016 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-27709955

RESUMEN

We report the effects of compressed CO2 molecules as a novel plasticization agent for poly(3-hexylthiophene) (P3HT)-conjugated polymer thin films. In situ neutron reflectivity experiments demonstrated the excess sorption of CO2 molecules in the P3HT thin films (about 40 nm in thickness) at low pressure (P = 8.2 MPa) under the isothermal condition of T = 36 °C, which is far below the polymer bulk melting point. The results proved that these CO2 molecules accelerated the crystallization process of the polymer on the basis of ex situ grazing incidence X-ray diffraction measurements after drying the films via rapid depressurization to atmospheric pressure: both the out-of-plane lamellar ordering of the backbone chains and the intraplane π-π stacking of the side chains were significantly improved, when compared with those in the control P3HT films subjected to conventional thermal annealing (at T = 170 °C). Electrical measurements elucidated that the CO2-annealed P3HT thin films exhibited enhanced charge carrier mobility along with decreased background charge carrier concentration and trap density compared with those in the thermally annealed counterpart. This is attributed to the CO2-induced increase in polymer chain mobility that can drive the detrapping of molecular oxygen and healing of conformational defects in the polymer thin film. Given the universality of the excess sorption of CO2 regardless of the type of polymers, the present findings suggest that CO2 annealing near the critical point can be useful as a robust processing strategy for improving the structural and electrical characteristics of other semiconducting conjugated polymers and related systems such as polymer:fullerene bulk heterojunction films.

6.
Soft Matter ; 12(6): 1801-9, 2016 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-26685723

RESUMEN

The stability or wettability of thin polymer films on solids is of vital interest in traditional technologies as well as in new emerging nanotechnologies. We report here that nanoscale structures of polymer chains adsorbed onto a solid surface play a crucial role in the thermal stability of the film. In this study, polystyrene (PS) spin-cast films (20 nm in thickness) with eight different molecular weights prepared on silicon (Si) substrates were used as a model. When low molecular weight (Mw≤ 50 kDa) PS films were subjected to thermal annealing at temperatures far above the bulk glass transition temperature, dewetting occurred promptly, while high molecular weight (Mw≥ 123 kDa) PS films were stable for at least 6 weeks at 150 °C. We reveal a strong correlation between the film stability and the two different interfacial structures of the adsorbed polymer chains: their opposing wettability against chemically identical free polymer chains results in a wetting-dewetting transition at the adsorbed polymer-free polymer interface. This is a unique aspect of the stability of polymer thin films and may be generalizable to other polymer systems regardless of the magnitude of solid-polymer attractive interactions.

7.
Biophys J ; 109(1): 106-12, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26153707

RESUMEN

Membrane thickness fluctuations have been associated with a variety of critical membrane phenomena, such as cellular exchange, pore formation, and protein binding, which are intimately related to cell functionality and effective pharmaceuticals. Therefore, understanding how these fluctuations are controlled can remarkably impact medical applications involving selective macromolecule binding and efficient cellular drug intake. Interestingly, previous reports on single-component bilayers show almost identical thickness fluctuation patterns for all investigated lipid tail-lengths, with similar temperature-independent membrane thickness fluctuation amplitude in the fluid phase and a rapid suppression of fluctuations upon transition to the gel phase. Presumably, in vivo functions require a tunability of these parameters, suggesting that more complex model systems are necessary. In this study, we explore lipid tail-length mismatch as a regulator for membrane fluctuations. Unilamellar vesicles of an equimolar mixture of dimyristoylphosphatidylcholine and distearoylphosphatidylcholine molecules, with different tail-lengths and melting transition temperatures, are used as a model system for this next level of complexity. Indeed, this binary system exhibits a significant response of membrane dynamics to thermal variations. The system also suggests a decoupling of the amplitude and the relaxation time of the membrane thickness fluctuations, implying a potential for independent control of these two key parameters.


Asunto(s)
Dimiristoilfosfatidilcolina/química , Membrana Dobles de Lípidos/química , Modelos Químicos , Fosfatidilcolinas/química , Liposomas Unilamelares/química , Difracción de Neutrones , Dispersión del Ángulo Pequeño , Análisis Espectral , Temperatura de Transición , Difracción de Rayos X
8.
Soft Matter ; 10(39): 7753-61, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25142254

RESUMEN

The orientation changes of perpendicular cylindrical microdomains in polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) thin films upon annealing in different solvent vapors were investigated by in situ grazing incidence small-angle X-ray scattering (GISAXS) and ex situ scanning force microscopy (SFM). The swelling of P4VP perpendicular cylinders (C⊥) in chloroform, a non-selective solvent vapor, leads to the reorientation to in-plane cylinders through a disordered state in a particular kinetic pathway in the phase diagram upon drying. On the other hand, the swelling of the P4VP perpendicular cylinders in a selective solvent vapor (i.e., 1,4-dioxane) induces a morphological transition from cylindrical to ellipsoidal as a transient structure to spherical microdomains; subsequent solvent evaporation resulted in shrinkage of the matrix in the vertical direction, merging the ellipsoidal domains into the perpendicularly aligned cylinders. In this paper, we have discussed the mechanism based on the selectivity of the solvent to the constituting blocks that is mainly responsible for the orientation changes.

9.
Soft Matter ; 10(34): 6392-403, 2014 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-24930998

RESUMEN

The effects of CO2 annealing on the melting and subsequent melt crystallization processes of spin-cast poly(ethylene oxide) (PEO) ultrathin films (20-100 nm in thickness) prepared on Si substrates were investigated. By using in situ neutron reflectivity, we found that all the PEO thin films show melting at a pressure as low as P = 2.9 MPa and at T = 48 °C which is below the bulk melting temperature (Tm). The films were then subjected to quick depressurization to atmospheric pressure, resulting in the non-equilibrium swollen state, and the melt crystallization (and/or dewetting) process was carried out in air via subsequent annealing at given temperatures below Tm. Detailed structural characterization using grazing incidence X-ray diffraction, atomic force microscopy, and polarized optical microscopy revealed two unique aspects of the CO2-treated PEO films: (i) a flat-on lamellar orientation, where the molecular chains stand normal to the film surface, is formed within the entire film regardless of the original film thickness and the annealing temperature; and (ii) the dewetting kinetics for the 20 nm thick film is much slower than that for the thicker films. The key to these phenomena is the formation of irreversibly adsorbed layers on the substrates during the CO2 annealing: the limited plasticization effect of CO2 at the polymer-substrate interface promotes polymer adsorption rather than melting. Here we explain the mechanisms of the melt crystallization and dewetting processes where the adsorbed layers play vital roles.

10.
Soft Matter ; 10(18): 3200-8, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24718376

RESUMEN

A series of giant polymer-dendron conjugates with a dendron head and a linear polymer tail were synthesized via"click" chemistry between azide-functionalized polystyrene (PS(N), N: degree-of-polymerization) and t-butyl protected, alkyne-functionalized second generation dendron (tD), followed by a deprotection process to generate a dendron termini possessing nine carboxylic acid groups. The molecular structures were confirmed by nuclear magnetic resonance, size-exclusion chromatographic analyses, and matrix-assisted laser desorption ionization time-of-flight mass spectra. These well-defined conjugates can serve as a model system to study the effects of the molecular geometries on the self-assembly behaviour, as compared with their linear analogues. Four phase morphologies found in flexible linear diblock copolymer systems, including lamellae, bicontinuous double gyroids, hexagonal packed cylinders, and body-centred cubic packed spheres, were observed in this series of conjugates based on the results of small angle X-ray scattering and transmission electron microscopy. All of the domain sizes in these phase separated structures were around or less than 10 nm. A 'half' phase diagram was constructed based on the experimental results. The geometrical effect was found not only to enhance the immiscibility between the PS(N) tail and dendron head, but also systematically shift all of the phase boundaries towards higher volume fractions of the PS(N) tails, resulting in an asymmetrical phase diagram. This study may provide a pathway to the construction of ordered patterns of sub-10 nm feature size using polymer-dendron conjugates.

11.
ACS Appl Mater Interfaces ; 15(2): 3420-3432, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36600562

RESUMEN

Here, we report synergistic nanostructured surfaces combining bactericidal and bacteria-releasing properties. A polystyrene-block-poly(methyl methacrylate) (PS-block-PMMA) diblock copolymer is used to fabricate vertically oriented cylindrical PS structures ("PS nanopillars") on silicon substrates. The results demonstrate that the PS nanopillars (with a height of about 10 nm, size of about 50 nm, and spacing of about 70 nm) exhibit highly effective bactericidal and bacteria-releasing properties ("dual properties") against Escherichia coli for at least 36 h of immersion in an E. coli solution. Interestingly, the PS nanopillars coated with a thin layer (≈3 nm thick) of titanium oxide (TiO2) ("TiO2 nanopillars") show much improved dual properties against E. coli (a Gram-negative bacterium) compared to the PS nanopillars. Moreover, the dual properties emerge against Listeria monocytogenes (a Gram-positive bacterium). To understand the mechanisms underlying the multifaceted property of the nanopillars, coarse-grained molecular dynamics (MD) simulations of a lipid bilayer (as a simplified model for E. coli) in contact with a substrate containing hexagonally packed hydrophilic nanopillars were performed. The MD results demonstrate that when the bacterium-substrate interaction is strong, the lipid heads adsorb onto the nanopillar surfaces, conforming the shape of a lipid bilayer to the structure/curvature of nanopillars and generating high stress concentrations within the membrane (i.e., the driving force for rupture) at the edge of the nanopillars. Membrane rupture begins with the formation of pores between nanopillars (i.e., bactericidal activity) and ultimately leads to the membrane withdrawal from the nanopillar surface (i.e., bacteria-releasing activity). In the case of Gram-positive bacteria, the adhesion area to the pillar surface is limited due to the inherent stiffness of the bacteria, creating higher stress concentrations within a bacterial cell wall. The present study provides insight into the mechanism underlying the "adhesion-mediated" multifaceted property of nanosurfaces, which is crucial for the development of next-generation antibacterial surface coatings for relevant medical applications.


Asunto(s)
Escherichia coli , Membrana Dobles de Lípidos , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Propiedades de Superficie
12.
Phys Rev Lett ; 109(26): 265501, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23368578

RESUMEN

We report the chain conformations of polymer molecules accommodated at the solid-polymer melt interfaces in equilibrium. Polystyrene "Guiselin" brushes (adsorbed layers) with different molecular weights were prepared on Si substrates and characterized by using x-ray and neutron reflectivity. The results are intriguing to show that the adsorbed layers are composed of the two different nanoarchitectures: flattened chains that constitute the inner higher density region of the adsorbed layers and loosely adsorbed polymer chains that form the outer bulklike density region. In addition, we found that the lone flattened chains, which are uncovered by the additional prolonged solvent leaching (∼120 days), are reversibly densified with increasing temperature up to 150 °C. By generalizing the chain conformations of bulks, we postulate that the change in probabilities of the local chain conformations (i.e., trans and gauche states) of polymer molecules is the origin of this densification process.


Asunto(s)
Nanoestructuras/química , Poliestirenos/química , Silicio/química , Adsorción , Cinética , Modelos Químicos , Conformación Molecular , Propiedades de Superficie , Temperatura de Transición
13.
Phys Rev Lett ; 107(22): 225901, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-22182035

RESUMEN

We report the origin of the effect of nanoscale confinement on the local viscosity of entangled polystyrene (PS) films at temperatures far above the glass transition temperature. By using marker x-ray photon correlation spectroscopy with gold nanoparticles embedded in the PS films prepared on solid substrates, we have determined the local viscosity as a function of the distance from the polymer-substrate interface. The results show the impact of a very thin adsorbed layer (~7 nm in thickness) even without specific interactions of the polymer with the substrate, overcoming the effect of a surface mobile layer at the air-polymer interface and thereby resulting in a significant increase in the local viscosity as approaching the substrate interface.

14.
ACS Nano ; 15(7): 11501-11513, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34128655

RESUMEN

The addition of nanoparticles (NPs) to polymers is a powerful method to improve the mechanical and other properties of macromolecular materials. Such hybrid polymer-particle systems are also rich in fundamental soft matter physics. Among several factors contributing to mechanical reinforcement, a polymer-mediated NP network is considered to be the most important in polymer nanocomposites (PNCs). Here, we present an integrated experimental-theoretical study of the collective NP dynamics in model PNCs using X-ray photon correlation spectroscopy and microscopic statistical mechanics theory. Silica NPs dispersed in unentangled or entangled poly(2-vinylpyridine) matrices over a range of NP loadings are used. Static collective structure factors of the NP subsystems at temperatures above the bulk glass transition temperature reveal the formation of a network-like microstructure via polymer-mediated bridges at high NP loadings above the percolation threshold. The NP collective relaxation times are up to 3 orders of magnitude longer than the self-diffusion limit of isolated NPs and display a rich dependence with observation wavevector and NP loading. A mode-coupling theory dynamical analysis that incorporates the static polymer-mediated bridging structure and collective motions of NPs is performed. It captures well both the observed scattering wavevector and NP loading dependences of the collective NP dynamics in the unentangled polymer matrix, with modest quantitative deviations emerging for the entangled PNC samples. Additionally, we identify an unusual and weak temperature dependence of collective NP dynamics, in qualitative contrast with the mechanical response. Hence, the present study has revealed key aspects of the collective motions of NPs connected by polymer bridges in contact with a viscous adsorbing polymer medium and identifies some outstanding remaining challenges for the theoretical understanding of these complex soft materials.

15.
Phys Rev Lett ; 104(6): 066101, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20366832

RESUMEN

By embedding "dilute" gold nanoparticles in single polystyrene thin films as "markers", we probe the local viscosity of the free surface at temperatures far above the glass transition temperature (T(g)). The technique used was x-ray photon correlation spectroscopy with resonance-enhanced x-ray scattering. The results clearly showed the surface viscosity is about 30% lower than the rest of the film. We found that this reduction is strongly associated with chain entanglements at the free surface rather than the reduction in T(g).

16.
Langmuir ; 26(7): 4627-30, 2010 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-20229992

RESUMEN

We report the nucleation process of methane hydrate on the molecular scale. A stationary planar interface separating methane gas and liquid water was studied by using in situ neutron reflectivity. We found that the angstrom-scale surface roughening is triggered as soon as the water phase contacts methane gas under the hydrate forming conditions. In addition, it was found that the microscopic surface structure remains unchanged until a macroscopic hydrate film is developed at the interface. We therefore postulate that the angstrom-scale surface roughening is attributed to the formation of microscopic hydrate "embryos" in a "dynamic equilibrium" manner.

17.
ACS Macro Lett ; 8(9): 1153-1159, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-35619442

RESUMEN

We report that the nanometer-scale architecture of polymer chains plays a crucial role in its protein resistant property over surface chemistry. Protein-repellent (noncharged), few nanometer thick polymer layers were designed with homopolymer chains physisorbed on solids. We evaluated the antifouling property of the hydrophilic or hydrophobic adsorbed homopolymer chains against bovine serum albumin in water. Molecular dynamics simulations along with sum frequency generation spectroscopy data revealed the self-organized nanoarchitecture of the adsorbed chains composed of inner nematic-like ordered segments and outer brush-like segments across homopolymer systems with different interactions among a polymer, substrate, and interfacial water. We propose that this structure acts as a dual barrier against protein adsorption.

18.
J Colloid Interface Sci ; 318(1): 103-9, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17942107

RESUMEN

Monolayers of organoclay platelets were formed at the air/water interface using the Langmuir technique and were then investigated either by in situ or lifted onto Si wafers and studied ex situ, using X-ray reflectivity (XR) methods. The XR data showed that the surfactant molecules on the clay platelets formed a dense, self-assembled monolayer where the molecules were tilted at an angle of 35 degrees +/-6 degrees from the normal to the dry clay surface. The surfactant layers only covered a fraction of the clay platelet surface area, where the fractional surface coverage for the three clays studied (C6A, C15A, and C20A) was found to be 0.90, 0.86, and 0.73, respectively. These values were significantly higher than those estimated from the cation exchange capacity (CEC) values. Rather than being uniformly distributed, the surfactant was clustered in patchy regions, indicating that the surface of the clay platelets had both polar and non-polar segments. This heterogeneity confirmed the hypothesis which was previously invoked to explain the distribution of the clay platelets in melt mixed homopolymer and polymer blend nanocomposites.


Asunto(s)
Silicatos de Aluminio/química , Membranas Artificiales , Nanocompuestos/química , Silicio/química , Arcilla , Microscopía de Fuerza Atómica , Propiedades de Superficie
19.
Polym Chem ; 9(40): 4994-5001, 2018 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-30923581

RESUMEN

Rational design rules for programming hierarchical organization and function through mutations of monomers in sequence-defined polymers can accelerate the development of novel polymeric and supramolecular materials. Our strategy for designing peptide-dendron hybrids that adopt predictable secondary and quaternary structures in bulk is based on patterning the sites at which dendrons are conjugated to short peptides. To validate this approach, we have designed and characterized a series of ß-sheet-forming peptide-dendron hybrids. Spectroscopic studies of the hybrids in films reveal that the peptide portion of the hybrids adopts the intended secondary structure.

20.
ACS Omega ; 3(12): 17805-17813, 2018 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458377

RESUMEN

We here report the self-organization process of poly(styrene-b-ethylene/butadiene-b-styrene) (SEBS) triblock copolymer chains physically adsorbed on a non-neutral surface. Spin-cast SEBS thin films were prepared on silicon (Si) substrates and then annealed at a high temperature far above the bulk glass transition temperatures of the two constituent blocks. To reveal the buried interfacial structure, we utilized solvent rinsing processes and a suite of surface-sensitive techniques including ellipsometry, X-ray reflectivity, atomic force microscopy, and grazing incidence small angle X-ray scattering. We revealed that the SEBS chains form two different chain structures on the substrate simultaneously: (i) "flattened chains" with the average height of 2.5 nm but without forming microdomain structures; (ii) "loosely adsorbed chains" with the average height of 11.0 nm and the formation of perpendicularly oriented cylindrical microdomains to the substrate surface. In addition, the kinetics to form the perpendicular-oriented cylinder was sluggish (∼200 h) and proceeded via multistep processes toward the equilibrium state. We also found that the lateral microdomain structures were distorted, and the characteristic lengths of the microdomains were slightly different from the bulk even after reaching "quasiequilibrium" state within the observed time window. Furthermore, we highlight the vital role of the adsorbed chains in the self-assembling process of the entire SEBS thin film: a long-range perturbation associated with the adsorbed chains propagates into the film interior, overwhelming the free surface effect associated with surface segregation of the lower surface tension of polystyrene blocks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA