Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 412(22): 5499-5512, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32621094

RESUMEN

Silicon dioxide (SiO2) has been used as a food additive (E551) for decades. However, some safety concerns have been raised recently due to the detection of silica nanoparticles (SiO2 NPs) in a variety of foodstuffs and their unknown long-term health risk to humans. In order for risk assessment to be conducted, it is essential to establish a reliable, valid, and pragmatic method for analysis of SiO2 NPs in foods for estimation of exposure. This paper presents an effective approach for both size characterization and mass quantification of SiO2 NPs in commercial high-fat coffee creamer using asymmetric flow field-flow fractionation (AF4) coupled to inductively coupled plasma mass spectrometry (ICP-MS). SiO2 NPs from coffee creamer were well extracted after cleanup with hexane in a two-phase (hexane vs. water) aqueous environment. Size determination of SiO2 NPs was performed by on-line AF4-ICP-MS based on calibration with monodispersed standards. The dominant primary size of SiO2 NPs in the studied sample was 36.5 nm. The mass percentages of SiO2 NPs (vs. total SiO2) were 18.6% for the dominant primary nano-silica particles by prechannel calibration and 35.7% for total SiO2 NPs (≤ 100 nm) by postchannel calibration, with recoveries of 89-96% for the former and 75% for the latter. The established approach was demonstrated to be efficient and practical for routine analysis of polydispersed SiO2 NPs with wide nano-size distribution in coffee creamer. This method may be extended to monitor the presence of SiO2 NPs in other similar complex food matrices. Graphical abstract.


Asunto(s)
Café/química , Espectrometría de Masas/métodos , Nanopartículas/química , Dióxido de Silicio/química , Aditivos Alimentarios/administración & dosificación , Fraccionamiento de Campo-Flujo/métodos , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Dióxido de Silicio/administración & dosificación , Espectrometría por Rayos X
2.
JDS Commun ; 5(1): 7-12, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38223384

RESUMEN

Nisin, a bacteriocin produced through fermentation using bacterium Lactococcus lactis, has several commercial variants such as nisin A and nisin Z. Nisin serves as a natural preservative with antimicrobial properties in various food products, including dairy and beverages, for extending product shelf life. The efficacy and safety of nisin A as a bacteriocin has been well characterized. However, there is limited evidence regarding the efficacy, stability, and safety of nisin Z as a food preservative, as it has not undergone comprehensive regulatory reviews. In this work, we studied the stability of nisin A and Z in a selection of yogurt drinks and found nisin to be unstable, particularly in fruit-flavored yogurt drinks. Both nisin A and Z could experience significant degradation leading to the nisin parent ion peaks dropping below detectable level before the product's expiry date. Compared with nisin A, the formation of oxidized metabolite nisin Z+O appeared to be the predominant reaction for nisin Z. These findings highlight the need for further scientific research to understand the behavior of nisin Z under different application conditions, which is crucial for assessing the efficacy and safety of nisin Z under these conditions. One potential application of this knowledge is to optimize the formulation of yogurt-based drinks to stabilize nisin Z and sustain its biopreservative function throughout the product's shelf life. Additionally, the current study shows that for the testing of the presence of nisin A or nisin Z, it is imperative to cover both the parent and the main degradant(s) of nisin. This is especially true for nisin Z, for which the regulatory approval status may vary in different markets. As such, the confirmative identification of nisin Z and its key metabolites in commercial products would be essential.

3.
J Agric Food Chem ; 71(37): 13654-13661, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37681756

RESUMEN

Artificial grow lights, such as light-emitting diodes (LEDs) and fluorescent grow lights, are commonly used in modern day indoor farming, citing advantages in energy efficiency and a higher controlled environment. However, the use of LEDs poses a risk in mercury contaminations as a result of its production process, specifically LEDs with polyurethane encapsulates that were traditionally produced using mercury resins as a catalyst. A total of 10.0 ppm of mercury was detected in a curly kale sample harvested from an indoor hydroponic vegetable farm, exceeding Singapore Food Regulation's limit of 0.05 ppm. Vegetables, farming inputs, and surface swabs from the affected farm were analyzed using wet acid digestion followed by cold vapor atomic absorption spectroscopy analysis. The investigation found high concentrations of mercury in the LED encapsulant, and the encapsulant material was identified to be polyurethane by Fourier transform infrared spectroscopy and pyrolysis-gas chromatography-mass spectrometry analysis, indicating the source of mercury contamination to be the LED polyurethane encapsulant.


Asunto(s)
Mercurio , Verduras , Granjas , Iluminación , Poliuretanos , Agricultura , Inocuidad de los Alimentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA