Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(42): 23143-23151, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37844138

RESUMEN

High-mobility group box 1 (HMGB1) is a multifunctional protein. Upon injury or infection, HMGB1 is passively released from necrotic and activated dendritic cells and macrophages, where it functions as a cytokine, acting as a ligand for RAGE, a major receptor of innate immunity stimulating inflammation responses including the pathogenesis of cerebral ischemia/reperfusion (I/R) injury. Blocking the HMGB1/RAGE axis offers a therapeutic approach to treating these inflammatory conditions. Here, we describe a synthetic antibody (SA), a copolymer nanoparticle (NP) that binds HMGB1. A lightly cross-linked N-isopropylacrylamide (NIPAm) hydrogel copolymer with nanomolar affinity for HMGB1 was selected from a small library containing trisulfated 3,4,6S-GlcNAc and hydrophobic N-tert-butylacrylamide (TBAm) monomers. Competition binding experiments with heparin established that the dominant interaction between SA and HMGB1 occurs at the heparin-binding domain. In vitro studies established that anti-HMGB1-SA inhibits HMGB1-dependent ICAM-1 expression and ERK phosphorylation of HUVECs, confirming that SA binding to HMGB1 inhibits the proteins' interaction with the RAGE receptor. Using temporary middle cerebral artery occlusion (t-MCAO) model rats, anti-HMGB1-SA was found to accumulate in the ischemic brain by crossing the blood-brain barrier. Significantly, administration of anti-HMGB1-SA to t-MCAO rats dramatically reduced brain damage caused by cerebral ischemia/reperfusion. These results establish that a statistical copolymer, selected from a small library of candidates synthesized using an "informed" selection of functional monomers, can yield a functional synthetic antibody. The knowledge gained from these experiments can facilitate the discovery, design, and development of a new category of drug.


Asunto(s)
Isquemia Encefálica , Proteína HMGB1 , Daño por Reperfusión , Ratas , Animales , Proteína HMGB1/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Inflamación/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Heparina/metabolismo
2.
Biochem Biophys Res Commun ; 555: 32-39, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33812056

RESUMEN

Protein-protein (e.g., antibody-antigen) interactions comprise multiple weak interactions. We have previously reported that lipid nanoparticles (LNPs) bind to and neutralize target toxic peptides after multifunctionalization of the LNP surface (MF-LNPs) with amino acid derivatives that induce weak interactions; however, the MF-LNPs aggregated after target capture and showed short blood circulation times. Here we optimized polyethylene glycol (PEG)-modified MF-LNPs (PEG-MF-LNPs) to inhibit the aggregation and increase the blood circulation time. Melittin was used as a target toxin, and MF-LNPs were prepared with negatively charged, hydrophobic, and neutral amino-acid-derivative-conjugated functional lipids. In this study, MF-LNPs modified with only PEG5k (PEG5k-MF-LNPs) and with both PEG5k and PEG2k (PEGmix-MF-LNPs) were prepared, where PEG5k and PEG2k represent PEG with a molecular weight of 5000 and 2000, respectively. PEGylation of the MF-LNPs did not decrease the melittin neutralization ability of nonPEGylated MF-LNPs, as tested by hemolysis assay. The PEGmix-MF-LNPs showed better blood circulation characteristics than the PEG5k-MF-LNPs. Although the nonPEGylated MF-LNPs immediately aggregated when mixed with melittin, the PEGmix-MF-LNPs did not aggregate. The PEGmix-MF-LNPs dramatically increased the survival rate of melittin-treated mice, whereas the nonPEGylated MF-LNPs increased slightly. These results provide a fundamental strategy to improve the in vivo toxin neutralization ability of MF-LNPs.


Asunto(s)
Antídotos/farmacología , Meliteno/toxicidad , Nanopartículas Multifuncionales/química , Polietilenglicoles/química , Animales , Antídotos/química , Antídotos/farmacocinética , Bovinos , Línea Celular , Hemólisis/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Lípidos/química , Masculino , Meliteno/sangre , Meliteno/metabolismo , Meliteno/farmacocinética , Ratones Endogámicos BALB C , Nanopartículas Multifuncionales/administración & dosificación , Nanopartículas Multifuncionales/metabolismo , Distribución Tisular
3.
Biochem Biophys Res Commun ; 561: 1-6, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34004514

RESUMEN

Synthetic polymers prepared using several functional monomers have attracted attention as cost-effective protein affinity reagents and alternative to antibodies. We previously reported the synthesis of poly NIPAm-based nanoparticles (NPs) using several functional monomers that can capture target molecules. In this study, we designed NPs for capturing glucose and inhibiting intestinal absorption in living mice. For capturing glucose, we focused on the Maillard reaction between primary amines and aldehyde residues. We hypothesized that the primary amine-containing NPs can capture the open-chain structure of glucose via the Maillard reaction and inhibit intestinal absorption. NPs were prepared by the precipitation polymerization of NIPAm, N-tert-butylacrylamide (TBAm), trifluoroacetate-protected N-(3-aminopropyl)methacrylamide (T-APM), and N,N'-methylenebisacrylamide. Then, T-APM in NPs was deprotected by NH3 (aq). The amount of glucose captured by NPs depended on the percentage of TBAm and APM in vitro. After 24 h, only 2% of orally administered NPs remained in the body after administration, suggesting that many NPs were excreted without being absorbed. The prepared NPs significantly inhibited an increase in blood glucose concentration after the oral administration of glucose and NPs, indicating that NPs capture glucose and inhibit intestinal absorption. These results show the potential of using synthetic polymer nanoparticles for inhibiting postprandial hyperglycemia.


Asunto(s)
Acrilamidas/química , Glucosa/metabolismo , Absorción Intestinal/efectos de los fármacos , Nanopartículas/administración & dosificación , Nanopartículas/química , Polímeros/química , Administración Oral , Animales , Glucosa/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos BALB C , Distribución Tisular
4.
Biol Pharm Bull ; 44(1): 1-6, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33390535

RESUMEN

Protein affinity reagents are widely used for basic research, diagnostics, and disease therapy. Antibodies and their fragments are known as the most common protein affinity reagents. They specifically and strongly bind to target molecules and inhibit their functions. Thus, antibody drugs have increased in the recent two decades for disease therapy, such as cancer. These strong protein-protein interactions are composed of a nexus of multiple weak interactions. Synthetic polymers that bind to target molecules have been developed by the imitation of protein-protein interactions. These polymers show nanomolar affinity for the target and neutralize their functions; thus, they are of significant interest as a cost-effective protein affinity reagent. We have been developing synthetic polymer nanoparticles (NPs) that bind to target peptides and proteins by the inclusion of several functional monomers, such as charged and hydrophobic monomers. In this review, the focus is on the design of synthetic polymer NPs that bind to target molecules for disease therapy. We succeeded in neutralization of toxic peptides and signaling proteins both in vitro and in vivo. Additionally, linear polymers were modified on a lipid nanoparticle surface to improve polymer biodistribution. Our recent findings should provide useful information for the development of abiotic protein affinity reagents.


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/síntesis química , Diseño de Fármacos , Nanopartículas/administración & dosificación , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Animales , Humanos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Neoplasias/metabolismo , Polímeros/administración & dosificación , Polímeros/síntesis química , Distribución Tisular/efectos de los fármacos , Distribución Tisular/fisiología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo
5.
Chem Pharm Bull (Tokyo) ; 69(8): 773-780, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34334521

RESUMEN

Multifunctional synthetic polymers can bind to target molecules and are therefore widely investigated in diagnostics, drug delivery carriers, and separation carriers. Because these polymers are synthesized from nonbiological components, purification processes (e.g., chromatography, dialysis, extraction, and centrifugation) must be conducted after the synthesis. Although several purification methods are used for polymer purification, few reports have revealed the influence of purification process on the functions of polymer. In this study, we demonstrated that the characteristics, function, and stability of synthetic polymer depend on the purification process. N-Isopropylacrylamide-based polymer nanoparticles (NPs) and melittin (i.e., honey bee venom) were used as a model of synthetic polymer and target toxic peptide, respectively. Synthesized NPs were purified by dialysis in methanol, acetone precipitation, or centrifugation. NPs purified by dialysis in ultrapure water were used as control NPs. Then, NP size, surface charge, toxin neutralization effect, and stability were determined. NP size did not considerably change by purification with centrifugation; however, it decreased by purification using dialysis in methanol and acetone precipitation compared with that of control NPs. The ζ-potential of NPs changed after each purification process compared with that of control NPs. The melittin neutralization efficiency of NPs depended on the purification process; i.e., it decreased by acetone precipitation and increased by dialysis in methanol and centrifugation compared with that of control NPs. Of note, the addition of methanol and acetone decreased NP stability. These studies implied the importance of considering the effect of the purification method on synthetic polymer function.


Asunto(s)
Nanopartículas/química , Polímeros/aislamiento & purificación , Estructura Molecular , Polímeros/síntesis química , Polímeros/química
6.
Biomacromolecules ; 20(4): 1644-1654, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30848887

RESUMEN

Synthetic polymers are of interest as stable and cost-effective biomolecule-affinity reagents, since these polymers interact with target biomolecules both in vitro and in the bloodstream. However, little has been reported about orally administered polymers capable of capturing a target molecule and inhibiting its intestinal absorption. Here, we describe the design of synthetic polymer nanoparticles (NPs) specifically capturing indole, a major factor exacerbating chronic kidney disease, in the intestine. N-isopropylacrylamide-based NPs were prepared with various hydrophobic monomers. The amounts of indole captured by NPs depended on the structures and feed ratios of the hydrophobic monomers and the polymer density but not on the particle size. The combination of hydrophobic and quadrupole interaction was effective to enhance the affinity and specificity of NPs for indole. The optimized NPs specifically inhibited intestinal absorption of orally administered indole in mice. These results showed the potential of synthetic polymer NPs for inhibiting the intestinal absorption of a target molecule.


Asunto(s)
Indoles/química , Nanopartículas/química , Células CACO-2 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Indoles/toxicidad , Absorción Intestinal , Tamaño de la Partícula
7.
Biomacromolecules ; 20(10): 3648-3657, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31518109

RESUMEN

The affinity of a synthetic polymer nanoparticle (NP) to a target biomacromolecule is determined by the association and dissociation rate constants (kon, koff) of the interaction. The individual rates and their sensitivity to local environmental influences are important factors for the on-demand capture and release a target biomacromolecule. Positively charged NPs for small interfering RNA (siRNA) delivery is a case in point. The knockdown efficacy of siRNA can be strongly influenced by the binding kinetics to the NP. Here, we show that kon and koff of siRNA to NPs can be individually engineered by tuning the chemical structure and composition of the NP. N-Isopropylacrylamide-based NPs functionalized with hydrophobic and amine monomers were used. koff decreased by increasing the amount of amine groups in the NP, whereas kon did not change. Importantly, NPs showing a low koff at pH 5.5 together with a high koff at pH 7.4 showed high knockdown efficiency when NP/siRNA complexes were packaged in lipid nanoparticles. These results provide direct evidence for the premise that the efficacy of an siRNA delivery vector is linked with the strong affinity to the siRNA in the endosome and low affinity in the cytoplasm.


Asunto(s)
Técnicas de Transferencia de Gen , Nanopartículas/química , ARN Interferente Pequeño/metabolismo , Acrilamidas/química , Animales , Línea Celular Tumoral , Citoplasma/metabolismo , Endosomas/metabolismo , Técnicas de Silenciamiento del Gen/métodos , Ratones , ARN Interferente Pequeño/genética , Polímeros de Estímulo Receptivo/química
8.
Biol Pharm Bull ; 42(6): 996-1003, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31155597

RESUMEN

A small interfering RNA (siRNA) delivery system using dioleylphosphate-diethylenetriamine conjugate (DOP-DETA)-based liposomes (DL) was assessed for systemic delivery of siRNA to tumors. DL carrying siRNA capable of inducing efficient gene silencing with low doses of siRNA were modified with polyethylene glycol (PEG-DL/siRNA) for systemic injection of siRNA. The biodistribution of DL and siRNA in the PEG-DL/siRNA was studied by using radiolabeled DL and fluorescence-labeled siRNA, respectively. DL in the PEG-DL/siRNA showed a high retention in the plasma, accumulation in the tumor, and low accumulation in the liver and spleen after intravenous injection. The in vivo effects of PEGylation were observed only when distearoylphosphatidylethanolamine (DSPE)-PEG but not distearoylglycerol (DSG)-PEG were used. This result suggests that the electrostatic interaction between lipid molecules on the surface of PEG-DL/siRNA was a critical determinant for the in vivo effect of PEGylation. When PEG-DL/siRNA (0.1 mg/kg siRNA) was intravenously injected into tumor-bearing mice, in vivo gene silencing was observed in subcutaneous tumors. These results indicate that PEG-DL/siRNA designed in this study is a promising formulation for systemic use of siRNA.


Asunto(s)
Neoplasias/genética , Fosfatidiletanolaminas/administración & dosificación , Polietilenglicoles/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , Animales , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Silenciador del Gen , Vectores Genéticos , Humanos , Liposomas , Hígado/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/farmacocinética , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , ARN Interferente Pequeño/sangre , ARN Interferente Pequeño/química , ARN Interferente Pequeño/farmacocinética , Bazo/metabolismo , Distribución Tisular , Quinasa Tipo Polo 1
9.
FASEB J ; 31(5): 1879-1890, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28082354

RESUMEN

For ischemic stroke treatment, extension of the therapeutic time window (TTW) of thrombolytic therapy with tissue plasminogen activator (tPA) and amelioration of secondary ischemia/reperfusion (I/R) injury are most desirable. Our previous studies have indicated that liposomal delivery of neuroprotectants into an ischemic region is effective for stroke treatment. In the present study, for solving the above problems in the clinical setting, the usefulness of combination therapy with tPA and liposomal fasudil (fasudil-Lip) was investigated in ischemic stroke model rats with photochemically induced thrombosis, with clots that were dissolved by tPA. Treatment with tPA 3 h after occlusion markedly increased blood-brain barrier permeability and activated matrix metalloproteinase (MMP)-2 and -9, which are involved in cerebral hemorrhage. However, an intravenous administration of fasudil-Lip before tPA markedly suppressed the increase in permeability and the MMP activation stemming from tPA. The combination treatment showed significantly larger neuroprotective effects, even in the case of delayed tPA administration compared with each treatment alone or the tPA/fasudil-treated group. These findings suggest that treatment with fasudil-Lip before tPA could decrease the risk of tPA-derived cerebral hemorrhage and extend the TTW of tPA and that the combination therapy could be a useful therapeutic option for ischemic stroke.-Fukuta, T., Asai, T., Yanagida, Y., Namba, M., Koide, H., Shimizu, K., Oku, N. Combination therapy with liposomal neuroprotectants and tissue plasminogen activator for treatment of ischemic stroke.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Liposomas/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Activador de Tejido Plasminógeno/uso terapéutico , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Terapia Combinada/métodos , Modelos Animales de Enfermedad , Masculino , Fármacos Neuroprotectores/administración & dosificación , Ratas Wistar , Daño por Reperfusión/tratamiento farmacológico , Activador de Tejido Plasminógeno/administración & dosificación
10.
Mol Pharm ; 15(4): 1495-1504, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29502423

RESUMEN

Triple-negative breast cancer is one of the intractable cancers that are not sensitive to treatment with existing molecular-targeted drugs. Recently, there has been much interest in RNA interference-mediated treatment of triple-negative breast cancer. In the present study, we have developed lipid nanoparticles encapsulating siRNA (LNP-siRNA) decorated with an Fab' antibody against heparin-binding EGF-like growth factor (αHB-EGF LNP-siRNA). αHB-EGF LNP-siRNA targeting polo-like kinase 1 (PLK1) was prepared and evaluated for its anticancer effect using MDA-MB-231 human triple-negative breast cancer cells overexpressing HB-EGF on their cell surface. Biodistribution data of radioisotope-labeled LNP and fluorescence-labeled siRNA indicated that αHB-EGF LNP effectively delivered siRNA to tumor tissue in MDA-MB-231 carcinoma-bearing mice. Expression of PLK1 protein in the tumors was clearly suppressed after intravenous injection of αHB-EGF LNP-siPLK1. In addition, tumor growth was significantly inhibited by treatment with this formulation of siRNA and an antibody-modified carrier. These findings indicate that αHB-EGF LNP is a promising carrier for the treatment of HB-EGF-expressing cancers, including triple-negative breast cancer.


Asunto(s)
Anticuerpos/administración & dosificación , Factor de Crecimiento Similar a EGF de Unión a Heparina/administración & dosificación , Factor de Crecimiento Similar a EGF de Unión a Heparina/química , Lípidos/química , Nanopartículas/química , ARN Interferente Pequeño/administración & dosificación , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Anticuerpos/química , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Femenino , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Humanos , Fragmentos Fab de Inmunoglobulinas/administración & dosificación , Fragmentos Fab de Inmunoglobulinas/química , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN/fisiología , Distribución Tisular , Neoplasias de la Mama Triple Negativas/metabolismo , Quinasa Tipo Polo 1
11.
Nanomedicine ; 11(1): 185-94, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25240598

RESUMEN

PTEN-positive tumors are not susceptible to the treatment with rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR). Here, we determined the susceptibility of PTEN-positive cells to small interfering RNA for mTOR (si-mTOR) by using a novel liposomal delivery system. We prepared dicetyl phosphate-tetraethylenepentamine-based polycation liposomes (TEPA-PCL) decorated with polyethylene glycol (PEG) grafting Ala-Pro-Arg-Pro-Gly (APRPG), a VRGFR-1-targeting peptide. APRPG-PEG-decorated TEPA-PCL carrying si-mTOR (APRPG-TEPA-PCL/si-mTOR) had an antiproliferative effect against B16F10 murine melanoma cells (PTEN-positive) and significantly inhibited both the proliferation and tube formation of mouse 2H-11 endothelial-like cells (PTEN-positive). APRPG-TEPA-PCL/si-mTOR treatment did not induce Akt phosphorylation (Ser473) in either B16F10 or 2H-11 cells although there was strong phosphorylation of Akt in response to rapamycin treatment. Intravenous injection of APRPG-TEPA-PCL/si-mTOR significantly suppressed the tumor growth compared with rapamycin treatment in mice bearing B16F10 melanoma. These findings suggest that APRPG-TEPA-PCL/si-mTOR is useful for the treatment of PTEN-positive tumors.


Asunto(s)
Melanoma/tratamiento farmacológico , Fosfohidrolasa PTEN/metabolismo , ARN Interferente Pequeño , Serina-Treonina Quinasas TOR/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , Animales , Proliferación Celular , Etilenodiaminas/química , Liposomas/química , Masculino , Melanoma Experimental , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Neovascularización Patológica , Fosfatidiletanolaminas/química , Fosforilación , Polietilenglicoles/química , ARN Interferente Pequeño/metabolismo
12.
Proc Natl Acad Sci U S A ; 109(1): 33-8, 2012 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-22198772

RESUMEN

Synthetic polymer nanoparticles (NPs) that bind venomous molecules and neutralize their function in vivo are of significant interest as "plastic antidotes." Recently, procedures to synthesize polymer NPs with affinity for target peptides have been reported. However, the performance of synthetic materials in vivo is a far greater challenge. Particle size, surface charge, and hydrophobicity affect not only the binding affinity and capacity to the target toxin but also the toxicity of NPs and the creation of a "corona" of proteins around NPs that can alter and or suppress the intended performance. Here, we report the design rationale of a plastic antidote for in vivo applications. Optimizing the choice and ratio of functional monomers incorporated in the NP maximized the binding affinity and capacity toward a target peptide. Biocompatibility tests of the NPs in vitro and in vivo revealed the importance of tuning surface charge and hydrophobicity to minimize NP toxicity and prevent aggregation induced by nonspecific interactions with plasma proteins. The toxin neutralization capacity of NPs in vivo showed a strong correlation with binding affinity and capacity in vitro. Furthermore, in vivo imaging experiments established the NPs accelerate clearance of the toxic peptide and eventually accumulate in macrophages in the liver. These results provide a platform to design plastic antidotes and reveal the potential and possible limitations of using synthetic polymer nanoparticles as plastic antidotes.


Asunto(s)
Meliteno/metabolismo , Nanopartículas/química , Pruebas de Neutralización , Polímeros/síntesis química , Acrilamidas/química , Acrilatos/química , Animales , Materiales Biocompatibles/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Inactivación Metabólica , Ratones , Ratones Endogámicos BALB C , Nanopartículas/administración & dosificación , Nanopartículas/ultraestructura , Tamaño de la Partícula , Unión Proteica/efectos de los fármacos , Distribución Tisular/efectos de los fármacos
13.
ACS Omega ; 9(1): 1011-1019, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222561

RESUMEN

Poly(N-isopropylacrylamide) (pNIPAm) undergoes a hydrophilicity/hydrophobicity change around its lower critical solution temperature (LCST). Therefore, pNIPAm-based polymer nanoparticles (NPs) shrink above their LCST and swell below their LCST. Although temperature responsiveness is an important characteristic of synthetic polymers in drug and gene delivery, few studies have investigated the temperature-responsive catch and release of low-molecular-weight drugs (LMWDs) as their affinity to the target changes. Since LMWDs have only a few functional groups, preparation of NPs with high affinity for LMWDs is hard compared with that for peptides and proteins. However, LMWDs such as anticancer drugs often have a stronger effect than peptides and proteins. Therefore, the development of NPs that can load and release LMWDs is needed for drug delivery. Here, we engineered pNIPAm-based NPs that capture paclitaxel (PTX), an anticancer LMWD that inhibits microtubules, above their LCST and release it below their LCST. The swelling transition of the NPs depended on their hydrophobic monomer structure. NPs with swelling ratios (=NP size at 25 °C/NP size at 37 °C) exceeding 1.90 released captured PTX when cooled to below their LCST by changing the affinity for PTX. On the other hand, NPs with a swelling ratio of only 1.14 released melittin. Therefore, optimizing the functional monomers of temperature-responsive NPs is essential for the catch and release of the target in a temperature-dependent manner. These results can guide the design of stimuli-responsive polymers that catch and release their target molecules.

14.
J Pharm Sci ; 112(7): 1908-1914, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36828124

RESUMEN

The loss of the phosphatase and tensin homolog (PTEN) deleted from chromosome 10 is frequently observed in a variety of human cancers and appears to be an ideal target in synthetic lethality-based treatment. In this study, the synthetic lethal interaction between PTEN loss and the gene silencing of poly [ADP-ribose] polymerase 1 (PARP1) was examined in human triple-negative breast cancer cells (PTEN-null MDA-MB-468 and PTEN-positive MDA-MB-231 cells). Polycation liposomes previously developed by us were employed to deliver the small interfering ribonucleic acid (siRNA) targeted toward PARP1 (siPARP1) into the cancer cells. The silencing of the PARP1 gene exerted a cytocidal effect on the MDA-MB-468 cells but had no effect on the MDA-MB-231 cells and the human umbilical vein endothelial cells employed as normal cells. The simultaneous knockdown of PARP1 and PTEN in the MDA-MB-231 cells resulted in the significant inhibition of cell growth. The data suggest that the effects of the PARP1 knockdown on the cells were dependent on the PTEN status. A significant increase in the DNA breaks and the extent of apoptosis, possibly due to the failure of DNA repair, was observed upon PARP1 knockdown in the MDA-MB-468 cells compared with the case in the MDA-MB-231 cells. Our findings suggest that the synthetic lethal approach via PARP1 gene silencing holds promise for the treatment of patients with PTEN-null breast cancer.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Células Endoteliales/metabolismo , Reparación del ADN , Silenciador del Gen , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética
15.
J Control Release ; 355: 745-759, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36804558

RESUMEN

Temperature-responsive polymers are often characterized by an abrupt change in the degree of swelling brought about by small changes in temperature. Polymers with a lower critical solution temperature (LCST) in particular, are important as drug and gene delivery vehicles. Drug molecules are taken up by the polymer in their solvent swollen state below their LCST. Increasing the temperature above the LCST, typically physiological temperatures, results in desolvation of polymer chains and microstructure collapse. The trapped drug is released slowly by passive diffusion through the collapsed polymer network. Since diffusion is dependent on many variables, localizing and control of the drug delivery rate can be challenging. Here, we report a fundamentally different approach for the rapid (seconds) tumor-specific delivery of a biomacromolecular drug. A copolymer nanoparticle (NP) was engineered with affinity for melittin, a peptide with potent anti-cancer activity, at physiological temperature. Intravenous injection of the NP-melittin complex results in its accumulation in organs and at the tumor. We demonstrate that by local cooling of the tumor the melittin is rapidly released from the NP-melittin complex. The release occurs only at the cooled tumor site. Importantly, tumor growth was significantly suppressed using this technique demonstrating therapeutically useful quantities of the drug can be delivered. This work reports the first example of an in vivo site-specific release of a macromolecular drug by local cooling for cancer therapy. In view of the increasing number of cryotherapeutic devices for in vivo applications, this work has the potential to stimulate cryotherapy for in vivo drug delivery.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Animales , Ratones , Polímeros/química , Meliteno , Sistemas de Liberación de Medicamentos , Antineoplásicos/uso terapéutico , Temperatura , Nanopartículas/química , Neoplasias/tratamiento farmacológico
16.
Biomater Sci ; 11(9): 3269-3277, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36939181

RESUMEN

Lipid nanoparticles (LNPs), comprising ionizable lipids, helper lipids, cholesterol, and PEG lipids, can act as delivery carriers for nucleic acids and have achieved clinical success in the delivery of siRNA and mRNA. It has been shown that the morphology of LNPs varies depending on their lipid composition, but the influence of their morphology on nucleic acid efficacy has not been fully elucidated. In this study, we used our previously developed novel lipid, dioleoylglycerophosphate-diethylenediamine conjugate (DOP-DEDA), to create pH-responsive LNPs (DOP-DEDA LNPs). We evaluated the morphology of DOP-DEDA LNPs composed of different helper lipids and the knockdown efficiency of small interfering RNA (siRNA). A distinctive difference in morphology was observed between DOP-DEDA LNPs of different helper lipids. Significant differences were also observed in the apparent pKa of DOP-DEDA LNPs and the knockdown efficiency of siRNA, which may be due to the difference in the localization of DOP-DEDA molecules in DOP-DEDA LNPs. These findings suggest that changing helper lipids alters the morphology of the DOP-DEDA LNP system, which affects the apparent pKa and knockdown efficiency of siRNA.


Asunto(s)
Lípidos , Nanopartículas , ARN Interferente Pequeño/genética , ARN Mensajero/genética
17.
Biol Pharm Bull ; 35(7): 1197-200, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22791173

RESUMEN

We previously observed that rhinacanthins, which are the main naphthoquinone esters isolated from the roots of a Thai medicinal plant, Rhinacanthus nasutus KURZ. (family Acanthaceae), suppress the growth of Meth-A sarcoma in the tumor-bearing mice and that rhinacanthin-N has the strongest antitumor activity among these naphthoquinone esters tested. In the present study, we investigated the effect of rhinacanthin-N on pulmonary metastasis induced by B16F10 melanoma cells in mice. C57BL/6 male mice were injected intravenously with B16F10 melanoma cells, and liposomal rhinacanthin-N was administered intraperitoneally from day 1 to 7 after tumor implantation. Liposomes were used to formulate an injectable form of the hydrophobic agent. Treatment of the mice with 5 or 10 mg/kg/d of liposomal rhinacanthin-N significantly inhibited the pulmonary metastatic colonization of the melanoma cells. Based on these data, our findings demonstrate that rhinacanthin-N possesses antimetastatic efficacy, which may make it a lead compound for the development of a new anticancer drug for use in cancer chemotherapy.


Asunto(s)
Acanthaceae , Antineoplásicos/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Melanoma Experimental/tratamiento farmacológico , Naftoquinonas/administración & dosificación , Animales , Proliferación Celular/efectos de los fármacos , Liposomas , Neoplasias Pulmonares/secundario , Masculino , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Raíces de Plantas
18.
J Mater Chem B ; 10(35): 6768-6776, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35506943

RESUMEN

Homeostasis can be achieved by adding a protein supplement; however, an appropriate vector is required to deliver the protein into the cell because of the low stability of proteins in the blood and low cell membrane permeability. Here we report an easy one-step method of encapsulating proteins into liposomes for delivery. We used negatively charged superoxide dismutase (SOD) and a polycation liposome as protein and liposome models, respectively. Liposome-encapsulated SOD was prepared by freeze-thawing the SOD-liposome complex (lipoplexes). The amount of immobilized SOD within the lipoplex significantly increased on freeze-thawing. Surprisingly, subjecting the single-layered lipoplexes to freeze-thawing produced multilayered liposomes with SOD localized between the lipid layers. The amount of SOD delivered intracellularly significantly increased by freeze-thawing compared with that delivered by lipoplexes without freeze-thawing. SOD, liposomes, and endosomes were separately localized in the cells. The freeze-thawed lipoplex-encapsulated SOD samples were intravenously injected in mice. The SOD biodistribution was dramatically changed compared with the injection of free SOD or lipoplex. SOD was detached from the lipoplex in the bloodstream after the injection of non-freeze-thawed lipoplex, whereas the encapsulation of SOD in the liposomes upon freeze-thawing enabled the stable circulation of SOD with the liposomes in the bloodstream. This work paves the way for the application of the freeze-thawing technology for the easy one-step encapsulation of proteins into liposomes for protein delivery.


Asunto(s)
Liposomas , Superóxido Dismutasa , Animales , Congelación , Lípidos , Ratones , Distribución Tisular
19.
Bioconjug Chem ; 22(3): 429-35, 2011 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-21361311

RESUMEN

Dicetyl phosphate-tetraethylenepentamine (DCP-TEPA) conjugate was newly synthesized and formed into liposomes for efficient siRNA delivery. Formulation of DCP-TEPA-based polycation liposomes (TEPA-PCL) complexed with siRNA was examined by performing knockdown experiments using stable EGFP-transfected HT1080 human fibrosarcoma cells and siRNA for GFP. An adequate amount of DCP-TEPA in TEPA-PCL and N/P ratio of TEPA-PCL/siRNA complexes were determined based on the knockdown efficiency. Then, the biodistribution of TEPA-PCL modified with poly(ethylene glycol) (PEG) was examined in BALB/c mice. As a result, TEPA-PCL modified with PEG6000 avoided reticuloendothelial system uptake and showed long circulation in the bloodstream. On the other hand, PEGylation of TEPA-PCL/siRNA complexes caused dissociation of a portion of the siRNA from the liposomes. However, we found that the use of cholesterol-conjugated siRNA improved the interaction between TEPA-PCL and siRNA, which allowed PEGylation of TEPA-PCL/siRNA complexes without siRNA dissociation. In addition, TEPA-PCL complexed with cholesterol-conjugated siRNA showed potent knockdown efficiency in stable luciferase-transfected B16-F10 murine melanoma cells. Finally, the biodistribution of cholesterol-conjugated siRNA formulated in PEGylated TEPA-PCL was examined by performing near-infrared fluorescence imaging in Colon26 NL-17 murine carcinoma-bearing mice. Our results showed that tumor targeting with siRNA via systemic administration was achieved by using PEGylated TEPA-PCL combined with active targeting with Ala-Pro-Arg-Pro-Gly, a peptide used for targeting angiogenic endothelium.


Asunto(s)
Etilenodiaminas/química , Liposomas/química , Organofosfatos/química , ARN Interferente Pequeño/metabolismo , Animales , Secuencia de Bases , Línea Celular Tumoral , Colesterol/metabolismo , Fibrosarcoma/metabolismo , Fibrosarcoma/patología , Silenciador del Gen , Humanos , Inyecciones Intravenosas , Liposomas/administración & dosificación , Liposomas/síntesis química , Liposomas/farmacocinética , Masculino , Ratones , Ratones Endogámicos BALB C , Imagen Molecular , Polietilenglicoles/química , ARN Interferente Pequeño/genética , Espectrofotometría Infrarroja
20.
Biol Pharm Bull ; 34(5): 602-8, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21532145

RESUMEN

Previously we developed dicetyl phosphate-tetraethylenepentamine-based polycation liposomes (TEPA-PCL) for use in small interfering RNA (siRNA) therapy. In the present study, mammalian target of rapamycin (mTOR) expression in cancer cells was silenced with mTOR-siRNA (simTOR) formulated in TEPA-PCL modified with Ala-Pro-Arg-Pro-Gly (APRPG), a peptide having affinity for vascular endothelial growth factor receptor-1 (VEGFR-1). We investigated the effects of inhibition of mTOR, focusing on the differences between cells treated with simTOR and those with rapamycin in terms of Akt (ser473) phosphorylation and antiproliferative effects. Rapamycin treatment is known to induce Akt (ser473) phosphorylation which attenuates the antiproliferative effects of rapamycin. As a result, knockdown of mTOR did not alter or only slightly reduced Akt (ser473) phosphorylation in phosphatase and tensin homolog deleted from chromosome 10 (PTEN)-null (LNCaP and MDA-MB-468 cells) and PTEN-positive (DU 145 and MDA-MB-231) cells, although rapamycin induced Akt (ser473) phosphorylation of these cells. Rapamycin suppressed the growth of PTEN-null cells, in which the rapamycin-sensitive mTOR complex 1 (mTORC1) is excessively activated. On the other hand, rapamycin did not suppress the growth of PTEN-positive cells possibly through a negative feedback mechanism via the rapamycin-insensitive mTOR complex 2 (mTORC2) signaling pathway. In contrast, simTOR significantly suppressed the growth of cancer cells regardless of the presence of PTEN, possibly through inhibition of both mTORC1 and mTORC2. These results indicate that mTOR knockdown using APRPG-TEPA-PCL/simTOR is likely to be an effective strategy for cancer siRNA therapy.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , ARN Interferente Pequeño/genética , Serina/metabolismo , Serina-Treonina Quinasas TOR/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Secuencia de Bases , Western Blotting , División Celular , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Humanos , Fosfohidrolasa PTEN/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA