Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(10)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39079741

RESUMEN

Protein glycosylation plays a vital role in various cellular functions, many of which occur within the Golgi apparatus. The Golgi pH regulator (GPHR) is essential for the proper functioning of the Golgi apparatus. The lysosomal membrane contains highly glycosylated membrane proteins in abundance. This study investigated the role of the Golgi luminal pH in N-glycosylation of lysosomal membrane proteins and the effect of this protein modification on membrane stability using Gphr-deficient MEFs. We showed that Gphr deficiency causes an imbalance in the Golgi luminal pH, resulting in abnormal protein N-glycosylation, indicated by a reduction in sialylated glycans and markedly reduced molecular weight of glycoproteins. Further experiments using FRAP and PLA revealed that Gphr deficiency prevented the trafficking dynamics and proximity condition of glycosyltransferases in the Golgi apparatus. In addition, incomplete N-glycosylation of lysosomal membrane proteins affected lysosomal membrane stability, as demonstrated by the increased susceptibility to lysosomal damage. Thus, this study highlights the critical role of Golgi pH regulation in controlling protein glycosylation and the impact of Golgi dysfunction on lysosomal membrane stability.


Asunto(s)
Aparato de Golgi , Homeostasis , Membranas Intracelulares , Lisosomas , Proteínas de la Membrana , Glicosilación , Aparato de Golgi/metabolismo , Lisosomas/metabolismo , Concentración de Iones de Hidrógeno , Animales , Proteínas de la Membrana/metabolismo , Ratones , Membranas Intracelulares/metabolismo , Transporte de Proteínas , Humanos , Glicosiltransferasas/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Glicoproteínas/metabolismo
2.
Sci Rep ; 14(1): 12093, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802533

RESUMEN

Recently, we found significantly reduced total superoxide dismutase (SOD) activity in the cartilage of patients with end-stage knee osteoarthritis (OA). In this study, we aimed to evaluate the SOD activity in serum, joint fluid, cartilage, and synovial membrane samples collected from 52 patients with end-stage knee OA who underwent total knee arthroplasty. The relationship between the total SOD activity in each tissue was evaluated using Spearman's rank correlation coefficient. The joint fluid total SOD activity was used as the objective variable, and its association with the serum, cartilage, and synovial total SOD activities was evaluated using multiple linear regression analysis. Univariate analysis revealed that joint fluid total SOD activity was positively correlated with synovial total SOD activity. Multiple linear regression analysis using joint fluid total SOD activity as the objective variable showed a positive association with synovial total SOD activity (ß = 0.493, adjusted R2 = 0.172, P < 0.01). In patients with end-stage knee OA, the state of the synovial total SOD activity is better reflected by the total SOD activity in the joint fluid than that in the cartilage. Joint fluid total SOD activity may serve as a biomarker for the treatment and prevention of synovitis.


Asunto(s)
Osteoartritis de la Rodilla , Superóxido Dismutasa , Líquido Sinovial , Membrana Sinovial , Humanos , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/enzimología , Osteoartritis de la Rodilla/patología , Masculino , Femenino , Líquido Sinovial/metabolismo , Superóxido Dismutasa/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Anciano , Persona de Mediana Edad , Biomarcadores , Cartílago Articular/patología , Cartílago Articular/metabolismo , Cartílago Articular/enzimología , Artroplastia de Reemplazo de Rodilla
3.
Mol Ther Methods Clin Dev ; 32(1): 101176, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38225934

RESUMEN

Thirty genes are involved in the biosynthesis and modification of glycosylphosphatidylinositol (GPI)-anchored proteins, and defects in these genes cause inherited GPI deficiency (IGD). PIGA is X-linked and involved in the first step of GPI biosynthesis, and only males are affected by variations in this gene. The main symptoms of IGD are neurological abnormalities, such as developmental delay and seizures. There is no effective treatment at present. We crossed Nestin-Cre mice with Piga-floxed mice to generate CNS-specific Piga knockout (KO) mice. Hemizygous KO male mice died by P10 with severely defective growth. Heterozygous Piga KO female mice are mosaic for Piga expression and showed severe defects in growth and myelination and died by P25. Using these mouse models, we evaluated the effect of gene replacement therapy with adeno-associated virus (AAV). It expressed efficacy within 6 days, and the survival of male mice was extended to up to 3 weeks, whereas 40% of female mice survived for approximately 1 year and the growth defect was improved. However, liver cancer developed in all three treated female mice at 1 year of age, which was probably caused by the AAV vector bearing a strong CAG promoter.

4.
Redox Biol ; 71: 103091, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38412803

RESUMEN

Low back pain (LBP) is a pervasive global health concern, primarily associated with intervertebral disc (IVD) degeneration. Although oxidative stress has been shown to contribute to IVD degeneration, the underlying mechanisms remain undetermined. This study aimed to unravel the role of superoxide dismutase 2 (SOD2) in IVD pathogenesis and target oxidative stress to limit IVD degeneration. SOD2 demonstrated a dynamic regulation in surgically excised human IVD tissues, with initial upregulation in moderate degeneration and downregulation in severely degenerated IVDs. Through a comprehensive set of in vitro and in vivo experiments, we found a suggestive association between excessive mitochondrial superoxide, cellular senescence, and matrix degradation in human and mouse IVD cells. We confirmed that aging and mechanical stress, established triggers for IVD degeneration, escalated mitochondrial superoxide levels in mouse models. Critically, chondrocyte-specific Sod2 deficiency accelerated age-related and mechanical stress-induced disc degeneration in mice, and could be attenuated by ß-nicotinamide mononucleotide treatment. These revelations underscore the central role of SOD2 in IVD redox balance and unveil potential therapeutic avenues, making SOD2 and mitochondrial superoxide promising targets for effective LBP interventions.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Superóxido Dismutasa , Humanos , Ratones , Animales , Superóxidos/metabolismo , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Estrés Oxidativo , Oxidación-Reducción , Homeostasis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA