Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 35(11-12): 899-913, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34016691

RESUMEN

In mammals, a set of core clock genes form transcription-translation feedback loops to generate circadian oscillations. We and others recently identified a novel transcript at the Period2 (Per2) locus that is transcribed from the antisense strand of Per2 This transcript, Per2AS, is expressed rhythmically and antiphasic to Per2 mRNA, leading to our hypothesis that Per2AS and Per2 mutually inhibit each other's expression and form a double negative feedback loop. By perturbing the expression of Per2AS, we found that Per2AS transcription, but not transcript, represses Per2 However, Per2 does not repress Per2AS, as Per2 knockdown led to a decrease in the Per2AS level, indicating that Per2AS forms a single negative feedback loop with Per2 and maintains the level of Per2 within the oscillatory range. Per2AS also regulates the amplitude of the circadian clock, and this function cannot be solely explained through its interaction with Per2, as Per2 knockdown does not recapitulate the phenotypes of Per2AS perturbation. Overall, our data indicate that Per2AS is an important regulatory molecule in the mammalian circadian clock machinery. Our work also supports the idea that antisense transcripts of core clock genes constitute a common feature of circadian clocks, as they are found in other organisms.


Asunto(s)
Relojes Circadianos/genética , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , Animales , Retroalimentación Fisiológica , Técnicas de Silenciamiento del Gen , Ratones , Proteínas Circadianas Period/genética
2.
Cell ; 152(5): 1091-105, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23452855

RESUMEN

Period determination in the mammalian circadian clock involves the turnover rate of the repressors CRY and PER. We show that CRY ubiquitination engages two competing E3 ligase complexes that either lengthen or shorten circadian period in mice. Cloning of a short-period circadian mutant, Past-time, revealed a glycine to glutamate missense mutation in Fbxl21, an F-box protein gene that is a paralog of Fbxl3 that targets the CRY proteins for degradation. While loss of function of FBXL3 leads to period lengthening, mutation of Fbxl21 causes period shortening. FBXL21 forms an SCF E3 ligase complex that slowly degrades CRY in the cytoplasm but antagonizes the stronger E3 ligase activity of FBXL3 in the nucleus. FBXL21 plays a dual role: protecting CRY from FBXL3 degradation in the nucleus and promoting CRY degradation within the cytoplasm. Thus, the balance and cellular compartmentalization of competing E3 ligases for CRY determine circadian period of the clock in mammals.


Asunto(s)
Criptocromos/metabolismo , Proteínas F-Box/metabolismo , Animales , Proteínas CLOCK/genética , Núcleo Celular/metabolismo , Cruzamientos Genéticos , Citoplasma/metabolismo , Proteínas F-Box/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Proteolisis
3.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34930826

RESUMEN

In mammals, circadian clocks are strictly suppressed during early embryonic stages, as well as in pluripotent stem cells, by the lack of CLOCK/BMAL1-mediated circadian feedback loops. During ontogenesis, the innate circadian clocks emerge gradually at a late developmental stage, and with these, the circadian temporal order is invested in each cell level throughout a body. Meanwhile, in the early developmental stage, a segmented body plan is essential for an intact developmental process, and somitogenesis is controlled by another cell-autonomous oscillator, the segmentation clock, in the posterior presomitic mesoderm (PSM). In the present study, focusing upon the interaction between circadian key components and the segmentation clock, we investigated the effect of the CLOCK/BMAL1 on the segmentation clock Hes7 oscillation, revealing that the expression of functional CLOCK/BMAL1 severely interferes with the ultradian rhythm of segmentation clock in induced PSM and gastruloids. RNA sequencing analysis implied that the premature expression of CLOCK/BMAL1 affects the Hes7 transcription and its regulatory pathways. These results suggest that the suppression of CLOCK/BMAL1-mediated transcriptional regulation during the somitogenesis may be inevitable for intact mammalian development.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Ritmo Circadiano , Embrión de Mamíferos/metabolismo , Organoides/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Redes Reguladoras de Genes , Mesodermo/metabolismo , Ratones , Proteínas Circadianas Period/genética , Somitos/crecimiento & desarrollo , Somitos/metabolismo
4.
Headache ; 64(2): 195-210, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38288634

RESUMEN

OBJECTIVE: To characterize the circadian features of the trigeminal ganglion in a mouse model of headache. BACKGROUND: Several headache disorders, such as migraine and cluster headache, are known to exhibit distinct circadian rhythms of attacks. The circadian basis for these rhythmic pain responses, however, remains poorly understood. METHODS: We examined trigeminal ganglion ex vivo and single-cell cultures from Per2::LucSV reporter mice and performed immunohistochemistry. Circadian behavior and transcriptomics were investigated using a novel combination of trigeminovascular and circadian models: a nitroglycerin mouse headache model with mechanical thresholds measured every 6 h, and trigeminal ganglion RNA sequencing measured every 4 h for 24 h. Finally, we performed pharmacogenomic analysis of gene targets for migraine, cluster headache, and trigeminal neuralgia treatments as well as trigeminal ganglion neuropeptides; this information was cross-referenced with our cycling genes from RNA sequencing data to identify potential targets for chronotherapy. RESULTS: The trigeminal ganglion demonstrates strong circadian rhythms in both ex vivo and single-cell cultures, with core circadian proteins found in both neuronal and non-neuronal cells. Using our novel behavioral model, we showed that nitroglycerin-treated mice display circadian rhythms of pain sensitivity which were abolished in arrhythmic Per1/2 double knockout mice. Furthermore, RNA-sequencing analysis of the trigeminal ganglion revealed 466 genes that displayed circadian oscillations in the control group, including core clock genes and clock-regulated pain neurotransmitters. In the nitroglycerin group, we observed a profound circadian reprogramming of gene expression, as 331 of circadian genes in the control group lost rhythm and another 584 genes gained rhythm. Finally, pharmacogenetics analysis identified 10 genes in our trigeminal ganglion circadian transcriptome that encode target proteins of current medications used to treat migraine, cluster headache, or trigeminal neuralgia. CONCLUSION: Our study unveiled robust circadian rhythms in the trigeminal ganglion at the behavioral, transcriptomic, and pharmacogenetic levels. These results support a fundamental role of the clock in pain pathophysiology. PLAIN LANGUAGE SUMMARY: Several headache diseases, such as migraine and cluster headache, have headaches that occur at the same time each day. We learned that the trigeminal ganglion, an important pain structure in several headache diseases, has a 24-hour cycle that might be related to this daily cycle of headaches. Our genetic analysis suggests that some medications may be more effective in treating migraine and cluster headache when taken at specific times of the day.


Asunto(s)
Cefalalgia Histamínica , Trastornos Migrañosos , Neuralgia del Trigémino , Ratones , Animales , Ganglio del Trigémino , Transcriptoma , Neuralgia del Trigémino/genética , Nitroglicerina , Cefalea , Perfilación de la Expresión Génica , Dolor , Ritmo Circadiano/genética , Ratones Noqueados
5.
FASEB J ; 36(3): e22186, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120261

RESUMEN

Alzheimer's disease (AD) is a devastating neurodegenerative disorder, and there is a pressing need to identify disease-modifying factors and devise interventional strategies. The circadian clock, our intrinsic biological timer, orchestrates various cellular and physiological processes including gene expression, sleep, and neuroinflammation; conversely, circadian dysfunctions are closely associated with and/or contribute to AD hallmarks. We previously reported that the natural compound Nobiletin (NOB) is a clock-enhancing modulator that promotes physiological health and healthy aging. In the current study, we treated the double transgenic AD model mice, APP/PS1, with NOB-containing diets. NOB significantly alleviated ß-amyloid burden in both the hippocampus and the cortex, and exhibited a trend to improve cognitive function in these mice. While several systemic parameters for circadian wheel-running activity, sleep, and metabolism were unchanged, NOB treatment showed a marked effect on the expression of clock and clock-controlled AD gene expression in the cortex. In accordance, cortical proteomic profiling demonstrated circadian time-dependent restoration of the protein landscape in APP/PS1 mice treated with NOB. More importantly, we found a potent efficacy of NOB to inhibit proinflammatory cytokine gene expression and inflammasome formation in the cortex, and immunostaining further revealed a specific effect to diminish astrogliosis, but not microgliosis, by NOB in APP/PS1 mice. Together, these results underscore beneficial effects of a clock modulator to mitigate pathological and cognitive hallmarks of AD, and suggest a possible mechanism via suppressing astrogliosis-associated neuroinflammation.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Antiinflamatorios/farmacología , Flavonas/farmacología , Gliosis/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Antiinflamatorios/uso terapéutico , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Citocinas/genética , Citocinas/metabolismo , Flavonas/uso terapéutico , Gliosis/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones , Fármacos Neuroprotectores/uso terapéutico
6.
Proc Natl Acad Sci U S A ; 114(36): E7479-E7488, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28827343

RESUMEN

Circadian clock oscillation emerges in mouse embryo in the later developmental stages. Although circadian clock development is closely correlated with cellular differentiation, the mechanisms of its emergence during mammalian development are not well understood. Here, we demonstrate an essential role of the posttranscriptional regulation of Clock subsequent to the cellular differentiation for the emergence of circadian clock oscillation in mouse fetal hearts and mouse embryonic stem cells (ESCs). In mouse fetal hearts, no apparent oscillation of cell-autonomous molecular clock was detectable around E10, whereas oscillation was clearly visible in E18 hearts. Temporal RNA-sequencing analysis using mouse fetal hearts reveals many fewer rhythmic genes in E10-12 hearts (63, no core circadian genes) than in E17-19 hearts (483 genes), suggesting the lack of functional circadian transcriptional/translational feedback loops (TTFLs) of core circadian genes in E10 mouse fetal hearts. In both ESCs and E10 embryos, CLOCK protein was absent despite the expression of Clock mRNA, which we showed was due to Dicer/Dgcr8-dependent translational suppression of CLOCK. The CLOCK protein is required for the discernible molecular oscillation in differentiated cells, and the posttranscriptional regulation of Clock plays a role in setting the timing for the emergence of the circadian clock oscillation during mammalian development.


Asunto(s)
Proteínas CLOCK/genética , Relojes Circadianos/genética , Ritmo Circadiano/genética , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Circadianas Period/genética , Procesamiento Proteico-Postraduccional/genética , Animales , Diferenciación Celular/genética , Regulación de la Expresión Génica/genética , Ratones , ARN Mensajero/genética , Proteínas de Unión al ARN/genética
7.
Proc Natl Acad Sci U S A ; 114(42): E8855-E8864, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28973913

RESUMEN

We previously created two PER2::LUCIFERASE (PER2::LUC) circadian reporter knockin mice that differ only in the Per2 3'-UTR region: Per2::Luc, which retains the endogenous Per2 3'-UTR and Per2::LucSV, where the endogenous Per2 3'-UTR was replaced by an SV40 late poly(A) signal. To delineate the in vivo functions of Per2 3'-UTR, we analyzed circadian rhythms of Per2::LucSV mice. Interestingly, Per2::LucSV mice displayed more than threefold stronger amplitude in bioluminescence rhythms than Per2::Luc mice, and also exhibited lengthened free-running periods (∼24.0 h), greater phase delays following light pulse, and enhanced temperature compensation relative to Per2::Luc Analysis of the Per2 3'-UTR sequence revealed that miR-24, and to a lesser degree miR-30, suppressed PER2 protein translation, and the reversal of this inhibition in Per2::LucSV augmented PER2::LUC protein level and oscillatory amplitude. Interestingly, Bmal1 mRNA and protein oscillatory amplitude as well as CRY1 protein oscillation were increased in Per2::LucSV mice, suggesting rhythmic overexpression of PER2 enhances expression of Per2 and other core clock genes. Together, these studies provide important mechanistic insights into the regulatory roles of Per2 3'-UTR, miR-24, and PER2 in Per2 expression and core clock function.


Asunto(s)
Ritmo Circadiano/fisiología , MicroARNs/genética , Proteínas Circadianas Period/genética , Regiones no Traducidas 3' , Animales , Relojes Circadianos/genética , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Luciferasas/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Circadianas Period/metabolismo , Biosíntesis de Proteínas , Temperatura
8.
Genes Cells ; 23(2): 60-69, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29271044

RESUMEN

The circadian clock, which regulates cellular physiology, such as energy metabolism, resides in each cell level throughout the body. Recently, it has been elucidated that the cellular circadian clock is closely linked with cellular differentiation. Moreover, the misregulation of cellular differentiation in mouse embryonic stem cells (ESCs) induced abnormally differentiated cells with impaired circadian clock oscillation, concomitant with the post-transcriptional suppression of CLOCK proteins. Here, we show that the circadian molecular oscillation is disrupted in dysdifferentiation-mediated mouse kidney tumors induced by partial in vivo reprogramming, resembling Wilms tumors. The expression of CLOCK protein was dramatically reduced in the tumor cells despite the Clock mRNA expression. We also showed that a similar loss of CLOCK was observed in human Wilms tumors, suggesting that the circadian molecular clockwork may be disrupted in dysdifferentiation-mediated embryonal tumors such as Wilms tumors, similar to the in vivo reprogramming-induced mouse kidney tumors. These results support our previous reports and may provide a novel viewpoint for understanding the pathophysiological nature of cancers through the correlation between cellular differentiation and circadian clock.


Asunto(s)
Diferenciación Celular , Relojes Circadianos , Ritmo Circadiano , Regulación de la Expresión Génica , Neoplasias Renales/patología , Tumor de Wilms/patología , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Células Cultivadas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/patología , Transcriptoma , Tumor de Wilms/genética , Tumor de Wilms/metabolismo
9.
Pediatr Surg Int ; 35(12): 1403-1411, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31555858

RESUMEN

PURPOSE: We investigated how local tumor resection affects metastatic lesions in neuroblastoma. METHODS: MYCN Tg tumor-derived cells were injected subcutaneously into 129+Ter/SvJcl wild-type mice. First, the frequency of metastasis-bearing mice was investigated immunohistochemically (metastatic ratio) at endpoint or post-injection day (PID) 90. Second, the threshold volume of local tumor in mice bearing microscopic lymph node metastasis (mLNM) was investigated at PID 30. Finally, local tumors were resected after exceeding the threshold. Mice were divided into local tumor resection (Resection) and observation (Observation) groups, and the metastatic ratio and volume of LNM were compared between the groups at endpoint or PID 74. RESULTS: The metastatic ratio without local resection was 88% at PID 78-90. The threshold local tumor volume in the mice with mLNM was 745 mm3 at PID 30, so local tumors were resected after exceeding 700 mm3. The metastatic ratio and LNM volume were significantly greater in the Resection group (n = 16) than in the Observation group (n = 16) (94% vs. 38%, p < 0.001; 2092 ± 2310 vs. 275 ± 218 mm3, p < 0.01; respectively) at PID 50-74. CONCLUSION: Local tumor resection might augment the growth of synchronous microscopic metastases. Our results provide insights into the appropriate timing of local resection for high-risk neuroblastoma.


Asunto(s)
Neoplasias de la Médula Ósea/secundario , Neoplasias Pulmonares/secundario , Metástasis Linfática , Neoplasias Primarias Secundarias/patología , Neuroblastoma/patología , Neuroblastoma/cirugía , Neoplasias Ováricas/secundario , Aloinjertos , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones
10.
Proc Natl Acad Sci U S A ; 111(47): E5039-48, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25389311

RESUMEN

The circadian clock in mammalian cells is cell-autonomously generated during the cellular differentiation process, but the underlying mechanisms are not understood. Here we show that perturbation of the transcriptional program by constitutive expression of transcription factor c-Myc and DNA methyltransferase 1 (Dnmt1) ablation disrupts the differentiation-coupled emergence of the clock from mouse ESCs. Using these model ESCs, 484 genes are identified by global gene expression analysis as factors correlated with differentiation-coupled circadian clock development. Among them, we find the misregulation of Kpna2 (Importin-α2) during the differentiation of the c-Myc-overexpressed and Dnmt1(-/-) ESCs, in which sustained cytoplasmic accumulation of PER proteins is observed. Moreover, constitutive expression of Kpna2 during the differentiation culture of ESCs significantly impairs clock development, and KPNA2 facilitates cytoplasmic localization of PER1/2. These results suggest that the programmed gene expression network regulates the differentiation-coupled circadian clock development in mammalian cells, at least in part via posttranscriptional regulation of clock proteins.


Asunto(s)
Diferenciación Celular/fisiología , Relojes Circadianos , Proteínas Nucleares/fisiología , Transcripción Genética , Animales , Células Madre Embrionarias/citología , Epigénesis Genética , Ratones , Proteínas Nucleares/genética , alfa Carioferinas
11.
iScience ; 27(2): 108934, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38533453

RESUMEN

Pathological consequences of circadian misalignment, such as shift work, show considerable individual differences, but the lack of mechanistic understanding hinders precision prevention to prevent and mitigate disease symptoms. Here, we employed an integrative approach involving physiological, transcriptional, and histological phenotypes to examine inter-individual differences in pre-symptomatic pathological progression, preceding irreversible disease onset, in wild-type mice exposed to chronic jet-lag (CJL). We observed that CJL markedly increased the prevalence of hepatic steatosis with pronounced inter-individual differences. Stratification of individual mice based on CJL-induced hepatic transcriptomic signature, validated by histopathological analysis, pinpoints dysregulation of lipid metabolism. Moreover, the period and power of intrinsic behavioral rhythms were found to significantly correlate with CJL-induced gene signatures. Together, our results suggest circadian rhythm robustness of the animals contributes to inter-individual variations in pathogenesis of circadian misalignment-induced diseases and raise the possibility that these physiological indicators may be available for predictive hallmarks of circadian rhythm disorders.

12.
Mol Nutr Food Res ; 67(9): e2200270, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36829302

RESUMEN

SCOPE: Polymethoxylated flavones (PMFs) are a group of natural compounds known to display a wide array of beneficial effects to promote physiological fitness. Recent studies reveal circadian clocks as an important cellular mechanism mediating preventive efficacy of the major PMF Nobiletin against metabolic disorders. Sudachitin is a PMF enriched in Citrus sudachi, and its functions and mechanism of action are poorly understood. METHODS AND RESULTS: Using circadian reporter cells, it shows that Sudachitin modulates circadian amplitude and period of Bmal1 promoter-driven reporter rhythms, and real-time qPCR analysis shows that Sudachitin alters expression of core clock genes, notably Bmal1, at both transcript and protein levels. Mass-spec analysis reveals systemic exposure in vivo. In mice fed with high-fat diet with or without Sudachitin, it observes increased nighttime activity and daytime sleep, accompanied by significant metabolic improvements in a circadian time-dependent manner, including respiratory quotient, blood lipid and glucose profiles, and liver physiology. Focusing on liver, RNA-sequencing and metabolomic analyses reveal prevalent diurnal alteration in both gene expression and metabolite accumulation. CONCLUSION: This study elucidates Sudachitin as a new clock-modulating PMF with beneficial effects to improve diurnal metabolic homeostasis and liver physiology, suggesting the circadian clock as a fundamental mechanism to safeguard physiological well-being.


Asunto(s)
Relojes Circadianos , Ratones , Animales , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Flavonoides/farmacología , Hígado/metabolismo , Ritmo Circadiano , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo
13.
Neurology ; 100(22): e2224-e2236, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-36990725

RESUMEN

BACKGROUND AND OBJECTIVES: Cluster headache and migraine have circadian features at multiple levels (cellular, systems, and behavioral). A thorough understanding of their circadian features informs their pathophysiologies. METHODS: A librarian created search criteria in MEDLINE Ovid, Embase, PsycINFO, Web of Science, and Cochrane Library. Two physicians independently performed the remainder of the systematic review/meta-analysis using Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines. Separate from the systematic review/meta-analysis, we performed a genetic analysis for genes with a circadian pattern of expression (clock-controlled genes or CCGs) by cross-referencing genome-wide association studies (GWASs) of headache, a nonhuman primate study of CCGs in a variety of tissues, and recent reviews of brain areas relevant in headache disorders. Altogether, this allowed us to catalog circadian features at the behavioral level (circadian timing, time of day, time of year, and chronotype), systems level (relevant brain areas where CCGs are active, melatonin and corticosteroid levels), and cellular level (core circadian genes and CCGs). RESULTS: For the systematic review and meta-analysis, 1,513 studies were found, and 72 met the inclusion criteria; for the genetic analysis, we found 16 GWASs, 1 nonhuman primate study, and 16 imaging reviews. For cluster headache behavior, meta-analyses showed a circadian pattern of attacks in 70.5% (3,490/4,953) of participants across 16 studies, with a clear circadian peak between 21:00 and 03:00 and circannual peaks in spring and autumn. Chronotype was highly variable across studies. At the systems level, lower melatonin and higher cortisol levels were reported in cluster headache participants. At the cellular level, cluster headache was associated with core circadian genes CLOCK and REV-ERBα, and 5 of the 9 cluster headache susceptibility genes were CCGs. For migraine behavior, meta-analyses showed a circadian pattern of attacks in 50.1% (2,698/5,385) of participants across 8 studies, with a clear circadian trough between 23:00 and 07:00 and a broad circannual peak between April and October. Chronotype was highly variable across studies. At the systems level, urinary melatonin levels were lower in participants with migraine and even lower during an attack. At the cellular level, migraine was associated with core circadian genes CK1δ and RORα, and 110 of the 168 migraine susceptibility genes were CCGs. DISCUSSION: Cluster headache and migraine are highly circadian at multiple levels, reinforcing the importance of the hypothalamus. This review provides a pathophysiologic foundation for circadian-targeted research into these disorders. TRIAL REGISTRATION INFORMATION: The study was registered with PROSPERO (registration number CRD42021234238).


Asunto(s)
Cefalalgia Histamínica , Melatonina , Trastornos Migrañosos , Animales , Cefalalgia Histamínica/genética , Melatonina/metabolismo , Estudio de Asociación del Genoma Completo , Trastornos Migrañosos/genética , Primates/metabolismo
14.
Invest Ophthalmol Vis Sci ; 63(5): 16, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35579906

RESUMEN

Purpose: To investigate circadian clock oscillation and circadian global gene expression in cultured human corneal endothelial cells (cHCECs) to elucidate and assess the potential function of circadian regulation in HCECs. Methods: In this study, we introduced a circadian bioluminescence reporter, Bmal1:luciferase (Bmal1:luc), into cHCECs and subsequently monitored real-time bioluminescence rhythms. RNA-sequencing data analysis was then performed using sequential time-course samples of the cHCECs to obtain a comprehensive understanding of the circadian gene expression rhythms. The potential relevance of rhythmically expressed genes was then assessed by systematic approaches using functional clustering and individual gene annotations. Results: Bmal1:luc bioluminescence exhibited clear circadian oscillation in the cHCECs. The core clock genes and clock-related genes showed high-amplitude robust circadian messenger RNA (mRNA) expression rhythms in cHCECs after treatment with dexamethasone, and 329 genes that exhibited circadian mRNA expression rhythms were identified (i.e., genes involved in various physiological processes including glycolysis, mitochondrial function, antioxidative systems, hypoxic responses, apoptosis, and extracellular matrix regulation, which represent the physiological functions of HCECs). Conclusions: Our findings revealed that cHCECs have a robust and functional circadian clock, and our discovery that a large number of genes exhibit circadian mRNA expression rhythms in cHCECs suggests a potential contribution of circadian regulation to fine-tune HCEC functions for daily changes in the environment.


Asunto(s)
Relojes Circadianos , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Células Endoteliales/metabolismo , Expresión Génica , Regulación de la Expresión Génica , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo
15.
J Oral Biosci ; 63(3): 265-270, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34358700

RESUMEN

OBJECTIVES: Irreversible morphological regressions of the teeth or related structures in older people can diminish their overall health. However, research on human aging in dentistry is complicated by several confounding factors. In this study, we conducted a morphometric analysis of the mandibular second molars and surrounding alveolar bone in C57BL/6 mice to evaluate age-related changes in the oral cavity. METHODS: The animals were divided into five groups based on their age: 4 weeks (juvenile mice; n = 5); 20 weeks (n = 7), 50 weeks (n = 5), 77 weeks (n = 7), and 100 weeks (n = 5); changes were evaluated using micro-computed tomography. RESULTS: The molars of juvenile mice had sharp and pointed cusps and presented maximum heights. With age and occlusal wear, the cusp heights demonstrated a significant decrease (up to 75%) until the last stage of life. Conversely, apparent lesions were not observed on the basal portion of the crown, even in the most heavily worn teeth. The roots of the molars continued to grow in length at 4 weeks of age. Alveolar bone resorption begins to occur in middle age and continues throughout life. The proportion of vertical bone loss reached approximately 40% of the entire root length, demonstrating a remarkable increase between weeks 77 and 100. CONCLUSIONS: Overall, these morphological changes were similar to those observed in humans. Therefore, it might be appropriate to use aged mice as an experimental model for basic and clinical research in geriatric dentistry.


Asunto(s)
Pérdida de Hueso Alveolar , Atrición Dental , Animales , Ratones , Ratones Endogámicos C57BL , Diente Molar/diagnóstico por imagen , Microtomografía por Rayos X
16.
Sci Rep ; 10(1): 13844, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32796949

RESUMEN

Growing evidence demonstrates circadian rhythms of pain hypersensitivity in various chronic disorders. In chemotherapy-induced peripheral neuropathy (CIPN), agents such as paclitaxel are known to elicit chronic neuropathic pain in cancer patients and seriously compromise their quality of life. Here, we report that the mechanical threshold for allodynia in paclitaxel-treated rats exhibited a robust circadian oscillation, reaching the nadir during the daytime (inactive phase). Using Per2::LucSV circadian reporter mice expressing a PER2::LUC fusion protein, we isolated dorsal root ganglia (DRG), the primary sensory cell body for peripheral nerve injury generated hypersensitivity, and monitored ex vivo reporter bioluminescence. We observed strong circadian reporter rhythms in DRG neurons which are highly entrainable by external cues. Paclitaxel treatment significantly lengthened DRG circadian periods, with little effects on the amplitude of oscillation. We further observed the core protein BMAL1 and PER2 in DRG neurons and satellite cells. Using DRG and dorsal horn (DH; another key structure for CIPN pain response) tissues from vehicle and paclitaxel treated rats, we performed RNA-sequencing and identified diurnal expression of core clock genes as well as clock-controlled genes in both sites. Interestingly, 20.1% and 30.4% of diurnal differentially expressed genes (DEGs) overlapped with paclitaxel-induced DEGs in the DRG and the DH respectively. In contrast, paclitaxel-induced DEGs displayed only a modest overlap between daytime and nighttime (Zeitgeber Time 8 and 20). Furthermore, paclitaxel treatment induced de novo diurnal DEGs, suggesting reciprocal interaction of circadian rhythms and chemotherapy. Our study therefore demonstrates a circadian oscillation of CIPN and its underlying transcriptomic landscape.


Asunto(s)
Antineoplásicos Fitogénicos/efectos adversos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Ganglios Espinales/fisiología , Neuralgia/etiología , Neuralgia/fisiopatología , Paclitaxel/efectos adversos , Factores de Transcripción ARNTL , Animales , Ritmo Circadiano/efectos de los fármacos , Modelos Animales de Enfermedad , Expresión Génica , Técnicas In Vitro , Ratones , Proteínas Circadianas Period , Traumatismos de los Nervios Periféricos , Ratas , Asta Dorsal de la Médula Espinal/fisiología
17.
Sci Rep ; 10(1): 2569, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32054990

RESUMEN

Modern society characterized by a 24/7 lifestyle leads to misalignment between environmental cycles and endogenous circadian rhythms. Persisting circadian misalignment leads to deleterious effects on health and healthspan. However, the underlying mechanism remains not fully understood. Here, we subjected adult, wild-type mice to distinct chronic jet-lag paradigms, which showed that long-term circadian misalignment induced significant early mortality. Non-biased RNA sequencing analysis using liver and kidney showed marked activation of gene regulatory pathways associated with the immune system and immune disease in both organs. In accordance, we observed enhanced steatohepatitis with infiltration of inflammatory cells. The investigation of senescence-associated immune cell subsets from the spleens and mesenteric lymph nodes revealed an increase in PD-1+CD44high CD4 T cells as well as CD95+GL7+ germinal center B cells, indicating that the long-term circadian misalignment exacerbates immune senescence and consequent chronic inflammation. Our results underscore immune homeostasis as a pivotal interventional target against clock-related disorders.


Asunto(s)
Senescencia Celular/inmunología , Ritmo Circadiano/inmunología , Síndrome Jet Lag/inmunología , Longevidad/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Senescencia Celular/genética , Ritmo Circadiano/genética , Modelos Animales de Enfermedad , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/inmunología , Inflamación/inmunología , Inflamación/fisiopatología , Síndrome Jet Lag/fisiopatología , Longevidad/genética , Ratones , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Análisis de Secuencia de ARN , Linfocitos T/inmunología , Linfocitos T/patología
18.
J Biol Rhythms ; 34(5): 525-532, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31368392

RESUMEN

The mammalian circadian clock, which coordinates various physiological functions, develops gradually during ontogeny. Recently, we have reported the posttranscriptional suppression of CLOCK protein expression as a key mechanism of the emergence of the circadian clock during mouse development. However, whether a common mechanism regulates the development of the human circadian clock remains unclear. In the present study, we show that human induced pluripotent stem cells (iPSCs) have no discernible circadian molecular oscillation. In addition, in vitro differentiation culture of human iPSCs required a longer duration than that required in mouse for the emergence of circadian oscillations. The expression of CLOCK protein in undifferentiated human iPSCs was posttranscriptionally suppressed despite the expression of CLOCK mRNA, which is consistent with our previous observations in mouse embryonic stem cells, iPSCs, and early mouse embryos. These results suggest that CLOCK protein expressions could be posttranscriptionally suppressed in the early developmental stage not only in mice but also in humans.


Asunto(s)
Proteínas CLOCK/genética , Diferenciación Celular , Relojes Circadianos/genética , Ritmo Circadiano , Células Madre Pluripotentes Inducidas/fisiología , Procesamiento Proteico-Postraduccional , Proteínas CLOCK/fisiología , Células Cultivadas , Relojes Circadianos/fisiología , Regulación de la Expresión Génica , Humanos , ARN Mensajero/genética
19.
Acta Histochem Cytochem ; 52(6): 93-99, 2019 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-32001947

RESUMEN

Rhythmic incremental growth lines occur in dental hard tissues of vertebrates, and dentinogenesis in rodent incisors is suggested to be controlled by the 24-hr circadian clock. Rodent incisors continue to grow throughout the animal's life; however, similar to human teeth, rodent molars stop growing after crown formation. This similarity suggests that the mouse molar is an excellent model to understand the molecular mechanisms underlying growth of human teeth. However, not much is known about the rhythmic dentinogenesis in mouse molars. Here, we investigated the incremental growth lines in mouse molar dentin using tetracycline as the growth marker. The incremental growth lines were observed to be generated at approximately 8-hr intervals in wild-type mice housed under 12:12 hr light-dark conditions. Moreover, the 8-hr rhythmic increments persisted in the wild-type and Bmal1-/- mice housed in constant darkness, where Bmal1-/- mice become behaviorally arrhythmic. These results revealed that the dentinogenesis in mouse molars underlie the ultradian rhythms with around 8-hr periodicity. Further, the circadian clock does not seem to be involved in this process, providing new insight into the mechanisms involved in the tooth growth.

20.
Nat Commun ; 10(1): 2563, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31189882

RESUMEN

Non-coding cis-regulatory elements are essential determinants of development, but their exact impacts on behavior and physiology in adults remain elusive. Cis-element-based transcriptional regulation is believed to be crucial for generating circadian rhythms in behavior and physiology. However, genetic evidence supporting this model is based on mutations in the protein-coding sequences of clock genes. Here, we report generation of mutant mice carrying a mutation only at the E'-box cis-element in the promoter region of the core clock gene Per2. The Per2 E'-box mutation abolishes sustainable molecular clock oscillations and renders circadian locomotor activity and body temperature rhythms unstable. Without the E'-box, Per2 messenger RNA and protein expression remain at mid-to-high levels. Our work delineates the Per2 E'-box as a critical nodal element for keeping sustainable cell-autonomous circadian oscillation and reveals the extent of the impact of the non-coding cis-element in daily maintenance of animal locomotor activity and body temperature rhythmicity.


Asunto(s)
Ritmo Circadiano/genética , Elementos E-Box/genética , Proteínas Circadianas Period/genética , Regiones Promotoras Genéticas/genética , Animales , Conducta Animal/fisiología , Temperatura Corporal/fisiología , Células Cultivadas , Fibroblastos , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Cultivo Primario de Células , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA