Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
2.
Molecules ; 25(10)2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429073

RESUMEN

The mosquito-borne viruses dengue (DENV) and Zika (ZIKV) viruses are two medically important pathogens in tropical and subtropical regions of the world. There is an urgent need of therapeutics against DENV and ZIKV, and medicinal plants are considered as a promising source of antiviral bioactive metabolites. In the present study, we evaluated the ability of Phyllanthus phillyreifolius, an endemic medicinal plant from Reunion Island, to prevent DENV and ZIKV infection in human cells. At non-cytotoxic concentration in vitro, incubation of infected A549 cells with a P. phillyreifolius extract or its major active phytochemical geraniin resulted in a dramatic reduction of virus progeny production for ZIKV as well as four serotypes of DENV. Virological assays showed that P. phillyreifolius extract-mediated virus inhibition relates to a blockade in internalization of virus particles into the host cell. Infectivity studies on ZIKV showed that both P. phillyreifolius and geraniin cause a loss of infectivity of the viral particles. Using a zebrafish model, we demonstrated that administration of P. phillyreifolius and geraniin has no effect on zebrafish locomotor activity while no morbidity nor mortality was observed up to 5 days post-inoculation. Thus, P. phillyreifolius could act as an important source of plant metabolite geraniin which is a promising antiviral compound in the fight against DENV and ZIKV.


Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Glucósidos/farmacología , Taninos Hidrolizables/farmacología , Phyllanthus/química , Fitoquímicos/farmacología , Internalización del Virus/efectos de los fármacos , Virus Zika/efectos de los fármacos , Células A549 , Animales , Antivirales/aislamiento & purificación , Línea Celular Tumoral , Chlorocebus aethiops , Virus del Dengue/crecimiento & desarrollo , Glucósidos/aislamiento & purificación , Hepatocitos/efectos de los fármacos , Hepatocitos/virología , Humanos , Taninos Hidrolizables/aislamiento & purificación , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/química , Plantas Medicinales , Reunión , Células Vero , Pez Cebra , Virus Zika/crecimiento & desarrollo
3.
Mem Inst Oswaldo Cruz ; 114: e190150, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31432892

RESUMEN

BACKGROUND: Zika virus (ZIKV) infections reported in recent epidemics have been linked to clinical complications that had never been associated with ZIKV before. Adaptive mutations could have contributed to the successful emergence of ZIKV as a global health threat to a nonimmune population. However, the causal relationships between the ZIKV genetic determinants, the pathogenesis and the rapid spread in Latin America and in the Caribbean remain widely unknown. OBJECTIVES: The aim of this study was to characterise three ZIKV isolates obtained from patient samples during the 2015/2016 Brazilian epidemics. METHODS: The ZIKV genomes of these strains were completely sequenced and in vitro infection kinetics experiments were carried out in cell lines and human primary cells. FINDINGS: Eight nonsynonymous substitutions throughout the viral genome of the three Brazilian isolates were identified. Infection kinetics experiments were carried out with mammalian cell lines A549, Huh7.5, Vero E6 and human monocyte-derived dendritic cells (mdDCs) and insect cells (Aag2, C6/36 and AP61) and suggest that some of these mutations might be associated with distinct viral fitness. The clinical isolates also presented differences in their infectivity rates when compared to the well-established ZIKV strains (MR766 and PE243), especially in their abilities to infect mammalian cells. MAIN CONCLUSIONS: Genomic analysis of three recent ZIKV isolates revealed some nonsynonymous substitutions, which could have an impact on the viral fitness in mammalian and insect cells.


Asunto(s)
Aedes/virología , Replicación Viral , Infección por el Virus Zika/virología , Virus Zika/genética , Animales , Brasil , Chlorocebus aethiops , Humanos , Ratones , Ratones Endogámicos BALB C , Filogenia , Células Vero , Carga Viral , Cultivo de Virus
4.
Int J Mol Sci ; 20(10)2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-31091703

RESUMEN

Zika virus (ZIKV) and Dengue virus (DENV) are mosquito-borne viruses of the Flavivirus genus that could cause congenital microcephaly and hemorrhage, respectively, in humans, and thus present a risk to global public health. A preventive vaccine against ZIKV remains unavailable, and no specific antiviral drugs against ZIKV and DENV are licensed. Medicinal plants may be a source of natural antiviral drugs which mostly target viral entry. In this study, we evaluate the antiviral activity of Doratoxylum apetalum, an indigenous medicinal plant from the Mascarene Islands, against ZIKV and DENV infection. Our data indicated that D. apetalum exhibited potent antiviral activity against a contemporary epidemic strain of ZIKV and clinical isolates of four DENV serotypes at non-cytotoxic concentrations in human cells. Time-of-drug-addition assays revealed that D. apetalum extract acts on ZIKV entry by preventing the internalisation of virus particles into the host cells. Our data suggest that D. apetalum-mediated ZIKV inhibition relates to virus particle inactivation. We suggest that D. apetalum could be a promising natural source for the development of potential antivirals against medically important flaviviruses.


Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Extractos Vegetales/farmacología , Sapindaceae/química , Virus Zika/efectos de los fármacos , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Humanos , Plantas Medicinales/química , Células Vero
5.
Int J Mol Sci ; 20(8)2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30991717

RESUMEN

The recent emergence and re-emergence of viral infections transmitted by vectors, such as the Zika virus (ZIKV) and Dengue virus (DENV), is a cause for international concern. These highly pathogenic arboviruses represent a serious health burden in tropical and subtropical areas of the world. Despite the high morbidity and mortality associated with these viral infections, antiviral therapies are missing. Medicinal plants have been widely used to treat various infectious diseases since millenaries. Several compounds extracted from plants exhibit potent effects against viruses in vitro, calling for further investigations regarding their efficacy as antiviral drugs. Here, we demonstrate that an extract from Psiloxylon mauritianum, an endemic medicinal plant from Reunion Island, inhibits the infection of ZIKV in vitro without exhibiting cytotoxic effects. The extract was active against different ZIKV African and Asian strains, including an epidemic one. Time-of-drug-addition assays revealed that the P. mauritianum extract interfered with the attachment of the viral particles to the host cells. Importantly, the P. mauritianum extract was also able to prevent the infection of human cells by four dengue virus serotypes. Due to its potency and ability to target ZIKV and DENV particles, P. mauritianum may be of value for identifying and characterizing antiviral compounds to fight medically-important flaviviruses.


Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Dengue/tratamiento farmacológico , Magnoliopsida/química , Polifenoles/farmacología , Infección por el Virus Zika/tratamiento farmacológico , Virus Zika/efectos de los fármacos , Animales , Antivirales/química , Células Cultivadas , Chlorocebus aethiops , Dengue/epidemiología , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plantas Medicinales/química , Polifenoles/química , Reunión/epidemiología , Células Vero , Infección por el Virus Zika/epidemiología
6.
Transpl Infect Dis ; 19(4)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28306183

RESUMEN

Serological diagnosis of flavivirus infection is a challenge, particularly in the context of a disease associated with immune response enhancement in a transplant patient, where aspects such as previous flavivirus infections may be involved with the outcome. We report a case of a pediatric patient who developed Guillain-Barré syndrome (GBS) after matched-unrelated hematopoietic stem cell transplantation (HSCT). The patient lives in a Brazilian region that is experiencing an epidemic of Zika virus (ZIKV) and dengue virus (DENV). Because an increasing number of cases of GBS, likely triggered by ZIKV infection, are being reported in Brazil, samples from the patient were tested for both ZIKV and DENV infection. Serological assays strongly suggested a recent ZIKV infection, although infection by DENV or co-infection with both viruses cannot be ruled out. The presence of anti-DENV immunoglobulin-G in donor serum led to the hypothesis that antibodies from the donor could have enhanced the severity of the ZIKV infection. This hypothesis is in agreement with the recent findings that DENV sero-cross-reactivity drives antibody-dependent enhancement of ZIKV infection. These findings highlight the need for discussion of the indication to perform previous flavivirus tests in HSCT donors, especially in areas where ZIKV and other flaviviruses co-circulate.


Asunto(s)
Virus del Dengue/inmunología , Dengue/complicaciones , Síndrome de Guillain-Barré/etiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Infección por el Virus Zika/complicaciones , Virus Zika/inmunología , Anticuerpos Antivirales/sangre , Brasil , Niño , Coinfección , Reacciones Cruzadas , Dengue/diagnóstico , Dengue/virología , Femenino , Síndrome de Guillain-Barré/diagnóstico , Síndrome de Guillain-Barré/inmunología , Humanos , Inmunoglobulina M/sangre , Pruebas Serológicas , Infección por el Virus Zika/diagnóstico , Infección por el Virus Zika/virología
7.
Virol J ; 13: 93, 2016 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-27267473

RESUMEN

BACKGROUND: We report the isolation and characterization of dengue virus (DENV) serotype 4 from a resident of Santa Fé, state of Paraná, South Brazil, in March 2013. This patient presented with hemorrhagic manifestations, high viral load and, interestingly, a mixed Th1/Th17 cytokine profile. CASE PRESENTATION: The patient presented with classical dengue symptoms, such as fever, rash, myalgia, arthralgia, and hemorrhagic manifestations including petechiae, gum bleeding and a positive tourniquet test result. A serum sample obtained 1 day after the initial appearance of clinical symptoms was positive for NS1 viral antigen, but this sample was negative for both IgM and IgG against DENV. Dengue virus infection was confirmed by isolation of the virus from C6/36 cells, and dengue virus serotyping was performed via one-step RT-PCR. The infection was confirmed to be caused by a serotype 4 dengue virus. Additionally, based on multiple alignment and phylogeny analyses of its complete genome sequence, the viral strain was classified as genotype II (termed LRV13/422). Moreover, a mixed Th1/Th17 cytokine profile was detected in the patient's serum, and this result demonstrated significant inflammation. Biological characterization of the virus via in vitro assays comparing LRV13/422 with a laboratory-adapted reference strain of dengue virus serotype 4 (TVP/360) showed that LRV13/422 infects both vertebrate and invertebrate cell lines more efficiently than TVP/360. However, LRV13/422 was unable to inhibit type I interferon responses, as suggested by the results obtained for other dengue virus strains. Furthermore, LRV13/422 is the first completely sequenced serotype 4 dengue virus isolated in South Brazil. CONCLUSION: The high viral load and mixed Th1/Th17 cytokine profile observed in the patient's serum could have implications for the development of the hemorrhagic signs observed, and these potential relationships can now be further studied using suitable animal models and/or in vitro systems.


Asunto(s)
Citocinas/sangre , Virus del Dengue/aislamiento & purificación , Dengue/patología , Dengue/virología , Genotipo , Serogrupo , Carga Viral , Animales , Brasil , Línea Celular , Análisis por Conglomerados , Virus del Dengue/clasificación , Virus del Dengue/genética , Humanos , Invertebrados , Masculino , Persona de Mediana Edad , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Células TH1/inmunología , Células Th17/inmunología , Vertebrados , Cultivo de Virus
8.
Virol J ; 12: 223, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26695767

RESUMEN

BACKGROUND: Dengue is the most prevalent arboviral disease in tropical and sub-tropical areas of the world. The incidence of infection is estimated to be 390 million cases and 25,000 deaths per year. Despite these numbers, neither a specific treatment nor a preventive vaccine is available to protect people living in areas of high risk. RESULTS: With the aim of seeking a treatment that can mitigate dengue infection, we demonstrated that the quinic acid derivatives known as compound 2 and compound 10 were effective against all four dengue virus serotypes and safe for use in a human hepatoma cell line (Huh7.5). Both compounds were non-virucidal to dengue virus particles and did not interfere with early steps of the dengue virus life cycle, including binding and internalization. Experiments using a replicon system demonstrated that compounds 2 and 10 impaired dengue virus replication in Huh7.5 cells. Additionally, the anti-dengue virus effects of the quinic acid derivatives were preserved in human peripheral blood mononuclear cells. CONCLUSIONS: Taken together, these data suggest that quinic acid derivatives represent a novel chemical class of active compounds that could be used to combat dengue virus infection.


Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Virus del Dengue/fisiología , Ácido Quínico/análogos & derivados , Ácido Quínico/farmacología , Replicación Viral/efectos de los fármacos , Animales , Antivirales/química , Antivirales/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Culicidae , Hepatocitos/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Modelos Moleculares , Estructura Molecular , Ácido Quínico/química , Ácido Quínico/toxicidad
9.
Sci Adv ; 9(35): eadg9204, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37656782

RESUMEN

Despite the considerable morbidity and mortality of yellow fever virus (YFV) infections in Brazil, our understanding of disease outbreaks is hampered by limited viral genomic data. Here, through a combination of phylogenetic and epidemiological models, we reconstructed the recent transmission history of YFV within different epidemic seasons in Brazil. A suitability index based on the highly domesticated Aedes aegypti was able to capture the seasonality of reported human infections. Spatial modeling revealed spatial hotspots with both past reporting and low vaccination coverage, which coincided with many of the largest urban centers in the Southeast. Phylodynamic analysis unraveled the circulation of three distinct lineages and provided proof of the directionality of a known spatial corridor that connects the endemic North with the extra-Amazonian basin. This study illustrates that genomics linked with eco-epidemiology can provide new insights into the landscape of YFV transmission, augmenting traditional approaches to infectious disease surveillance and control.


Asunto(s)
Fiebre Amarilla , Virus de la Fiebre Amarilla , Humanos , Virus de la Fiebre Amarilla/genética , Filogenia , Brasil/epidemiología , Fiebre Amarilla/epidemiología , Brotes de Enfermedades , Genómica
10.
Clin Rheumatol ; 41(3): 705-708, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34674083

RESUMEN

Vaccination is a current strategy used to prevent infections in patients with immune-mediated rheumatic diseases. However, the use of live-attenuated vaccines prepared from living microorganisms in these patients should be avoided due to the risk of acquiring infections. The present study aimed to investigate the effect of the yellow fever (YF) vaccine (a live-attenuated vaccine) in 12 patients with rheumatoid arthritis (RA). The sample comprised 12 patients (9 females and 3 males; mean age 52.2 ± 6.5 years) with RA, who inadvertently received fractionated 17D yellow fever vaccination during an outbreak of this disease. In this cohort, 10 were administered leflunomide; 7 were administered methotrexate; 6 were administered prednisone (median dose of 5.0 mg/day); 6 took biologic drugs; and 1 took tofacitinib. All but one patient (used rituximab, prednisone, and methotrexate) seroconverted. None of them developed clinical signs of infection after the procedure. The fractionated dose of the YF vaccine is effective and safe in the observed sample. Key Points • Patients with autoimmune inflammatory rheumatic diseases (AIIRD) are at a high risk of acquiring infections • The fractionated dose of the YF vaccine is effective and safe in the observed sample • Vaccination against YF should be avoided in patients with AIIRD under immunosuppression owing to the risks of inducing YF infection.


Asunto(s)
Artritis Reumatoide , Fiebre Amarilla , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Artritis Reumatoide/tratamiento farmacológico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Seroconversión , Vacunación , Fiebre Amarilla/prevención & control
11.
J Infect ; 81(5): 766-775, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32987099

RESUMEN

OBJECTIVES: Screening for genes differentially expressed in placental tissues, aiming to identify transcriptional signatures that may be involved in ZIKV congenital pathogenesis. METHODS: Transcriptome data from placental tissues of pregnant women naturally infected with Zika virus during the third trimester were compared to those from women who tested negative for Zika infection. The findings were validated using both a cell culture model and an immunohistochemistry/morphological analysis of naturally infected placental tissues. RESULTS: Transcriptome analysis revealed that Zika virus infection induces downregulation of insulin-like growth factor II (IGF2) gene, an essential factor for fetal development. The Caco-2 cell culture model that constitutively expresses IGF2 was used for the transcriptome validation. Asiatic and African Zika virus strains infection caused downregulated IGF2 gene expression in Caco-2 cells, whereas other flaviviruses, such as dengue serotype 1, West Nile and wild-type yellow fever viruses, had no effect on this gene expression. Immunohistochemical assays on decidual tissues corroborated our transcriptome analysis, showing that IGF2 is reduced in the decidua of Zika virus-infected women. CONCLUSIONS: Our results draw attention to IGF2 modulation in uterine tissues, and this finding is expected to support future studies on strategies to ameliorate the harmful effects of Zika virus infection during pregnancy.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Brasil , Células CACO-2 , Regulación hacia Abajo , Femenino , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Embarazo , Tercer Trimestre del Embarazo , Virus Zika/genética
12.
Sci Rep ; 9(1): 16348, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31705028

RESUMEN

The Zika virus (ZIKV) is an arthropod-borne virus that belongs to the Flaviviridae family. The ZIKV infection is usually asymptomatic or is associated with mild clinical manifestations; however, increased numbers of cases of microcephaly and birth defects have been recently reported. To date, neither a vaccine nor an antiviral treatment has become available to control ZIKV replication. Among the natural compounds recognized for their medical properties, flavonoids, which can be found in fruits and vegetables, have been found to possess biological activity against a variety of viruses. Here, we demonstrate that the citrus flavanone naringenin (NAR) prevented ZIKV infection in human A549 cells in a concentration-dependent and ZIKV-lineage independent manner. NAR antiviral activity was also observed when primary human monocyte-derived dendritic cells were infected by ZIKV. NAR displayed its antiviral activity when the cells were treated after infection, suggesting that NAR acts on the viral replication or assembly of viral particles. Moreover, a molecular docking analysis suggests a potential interaction between NAR and the protease domain of the NS2B-NS3 protein of ZIKV which could explain the anti-ZIKV activity of NAR. Finally, the results support the potential of NAR as a suitable candidate molecule for developing anti-ZIKV treatments.


Asunto(s)
Antivirales/farmacología , Citrus/química , Flavanonas/farmacología , Replicación Viral , Infección por el Virus Zika/tratamiento farmacológico , Virus Zika/efectos de los fármacos , Células A549 , Antiulcerosos/química , Antiulcerosos/farmacología , Antivirales/química , Supervivencia Celular , Flavanonas/química , Humanos , Técnicas In Vitro , Simulación del Acoplamiento Molecular , Ensamble de Virus , Infección por el Virus Zika/virología
13.
PLoS Negl Trop Dis ; 12(3): e0006342, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29543803

RESUMEN

Zika virus (ZIKV) is an emerging arbovirus belonging to the genus flavivirus that comprises other important public health viruses, such as dengue (DENV) and yellow fever (YFV). In general, ZIKV infection is a self-limiting disease, however cases of Guillain-Barré syndrome and congenital brain abnormalities in newborn infants have been reported. Diagnosing ZIKV infection remains a challenge, as viral RNA detection is only applicable until a few days after the onset of symptoms. After that, serological tests must be applied, and, as expected, high cross-reactivity between ZIKV and other flavivirus serology is observed. Plaque reduction neutralization test (PRNT) is indicated to confirm positive samples for being more specific, however it is laborious intensive and time consuming, representing a major bottleneck for patient diagnosis. To overcome this limitation, we developed a high-throughput image-based fluorescent neutralization test for ZIKV infection by serological detection. Using 226 human specimens, we showed that the new test presented higher throughput than traditional PRNT, maintaining the correlation between results. Furthermore, when tested with dengue virus samples, it showed 50.53% less cross reactivity than MAC-ELISA. This fluorescent neutralization test could be used for clinical diagnosis confirmation of ZIKV infection, as well as for vaccine clinical trials and seroprevalence studies.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Procesamiento de Imagen Asistido por Computador/métodos , Pruebas de Neutralización/métodos , Pruebas Serológicas/métodos , Infección por el Virus Zika/diagnóstico , Virus Zika/inmunología , Reacciones Cruzadas , Dengue/virología , Virus del Dengue/inmunología , Fluorescencia , Técnica del Anticuerpo Fluorescente , Humanos , Ensayo de Placa Viral , Infección por el Virus Zika/sangre , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología
14.
Sci Rep ; 8(1): 10856, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-30022045

RESUMEN

The mosquito-borne Zika virus (ZIKV) belongs to the flavivirus genus of the Flaviviridae family. Contemporary epidemic strains of ZIKV are associated with congenital malformations in infants, including microcephaly, as well as Guillain-Barré syndrome in adults. A risk of human-to-human transmission of ZIKV is also well documented. A worldwide research effort has been undertaken to identify safe and effective strategies to prevent or treat ZIKV infection. We show here that extract from Aphloia theiformis, an edible endemic plant from Indian Ocean islands, exerts a potent antiviral effect against ZIKV strains of African and Asian lineages, including epidemic strains. The antiviral effect of A. theiformis extract was extended to clinical isolates of dengue virus (DENV) of the four serotypes in human hepatocytes. A. theiformis inhibited virus entry in host cells by acting directly on viral particles, thus impairing their attachment to the cell surface. Electron microscopic observations revealed that organization of ZIKV particles was severely affected by A. theiformis. We propose a model of antiviral action for A. theiformis against flaviviruses that highlights the potential of medicinal plants as promising sources of naturally-derived antiviral compounds to prevent ZIKV and DENV infections.


Asunto(s)
Extractos Vegetales/farmacología , Plantas Comestibles/química , Acoplamiento Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Infección por el Virus Zika/tratamiento farmacológico , Virus Zika/efectos de los fármacos , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/virología , Ciclo Celular , Proliferación Celular , Células Cultivadas , Chlorocebus aethiops , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/virología , Magnoliopsida/química , Reunión/epidemiología , Células Vero , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/virología
15.
Sci Rep ; 7(1): 16229, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29176643

RESUMEN

Yellow fever is an arboviral disease that causes thousands of deaths every year in Africa and the Americas. However, few commercial diagnostic kits are available. Non-structural protein 1 (NS1) is an early marker of several flavivirus infections and is widely used to diagnose dengue virus (DENV) infection. Nonetheless, little is known about the dynamics of Yellow fever virus (YFV) NS1 expression and secretion, to encourage its use in diagnosis. To tackle this issue, we developed a quantitative NS1-capture ELISA specific for YFV using a monoclonal antibody and recombinant NS1 protein. This test was used to quantify NS1 in mosquito and human cell line cultures infected with vaccine and wild YFV strains. Our results showed that NS1 was detectable in the culture supernatants of both cell lines; however, a higher concentration was maintained as cell-associated rather than secreted into the extracellular milieu. A panel of 73 human samples was used to demonstrate the suitability of YFV NS1 as a diagnostic tool, resulting in 80% sensitivity, 100% specificity, a 100% positive predictive value and a 95.5% negative predictive value compared with RT-PCR. Overall, the developed NS1-capture ELISA showed potential as a promising assay for the detection of early YF infection.


Asunto(s)
Pruebas Serológicas/métodos , Proteínas no Estructurales Virales/inmunología , Fiebre Amarilla/sangre , Aedes , Animales , Línea Celular , Chlorocebus aethiops , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Células Vero
16.
Sci Rep ; 7: 41864, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28157234

RESUMEN

Dengue is one of the most significant health problems in tropical and sub-tropical regions throughout the world. Nearly 390 million cases are reported each year. Although a vaccine was recently approved in certain countries, an anti-dengue virus drug is still needed. Fruits and vegetables may be sources of compounds with medicinal properties, such as flavonoids. This study demonstrates the anti-dengue virus activity of the citrus flavanone naringenin, a class of flavonoid. Naringenin prevented infection with four dengue virus serotypes in Huh7.5 cells. Additionally, experiments employing subgenomic RepDV-1 and RepDV-3 replicon systems confirmed the ability of naringenin to inhibit dengue virus replication. Antiviral activity was observed even when naringenin was used to treat Huh7.5 cells 24 h after dengue virus exposure. Finally, naringenin anti-dengue virus activity was demonstrated in primary human monocytes infected with dengue virus sertoype-4, supporting the potential use of naringenin to control dengue virus replication. In conclusion, naringenin is a suitable candidate molecule for the development of specific dengue virus treatments.


Asunto(s)
Virus del Dengue/efectos de los fármacos , Flavanonas/farmacología , Replicación Viral , Línea Celular , Virus del Dengue/fisiología , Humanos
17.
Diagn Microbiol Infect Dis ; 85(3): 323-327, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27155935

RESUMEN

Hantaviruses are etiologic agents of a zoonotic disease transmitted mainly from wild rodents to humans, causing Hemorrhagic Fever with Renal Syndrome in Eurasia and the Hantavirus Cardiopulmonary Syndrome in the Americas (HCPS), reaching a lethality rate of 40% in Brazil. Hantavirus diagnostic and seroprevalence are often based on the presence of IgM and IgG antibodies against the virus. Here we propose a rapid test assay able to identify hantavirus antibodies with sensibility and specificity similar to ELISA assays. We analyzed five groups of samples, including healthy human population and small mammals of endemic areas, suspected cases of HCPS, patients with non-related infections and a serum panel from a different geographical region. The test presented good rates of sensibility (87-100%) and specificity (97-100%) for all groups, being a promising tool suitable for both rodent and human hantavirus epidemiological surveys.


Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/veterinaria , Inmunoensayo/métodos , Orthohantavirus/inmunología , Sistemas de Atención de Punto , Animales , Humanos , Roedores , Sensibilidad y Especificidad , Estudios Seroepidemiológicos
18.
Mem. Inst. Oswaldo Cruz ; 114: e190150, 2019. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1020077

RESUMEN

BACKGROUND Zika virus (ZIKV) infections reported in recent epidemics have been linked to clinical complications that had never been associated with ZIKV before. Adaptive mutations could have contributed to the successful emergence of ZIKV as a global health threat to a nonimmune population. However, the causal relationships between the ZIKV genetic determinants, the pathogenesis and the rapid spread in Latin America and in the Caribbean remain widely unknown. OBJECTIVES The aim of this study was to characterise three ZIKV isolates obtained from patient samples during the 2015/2016 Brazilian epidemics. METHODS The ZIKV genomes of these strains were completely sequenced and in vitro infection kinetics experiments were carried out in cell lines and human primary cells. FINDINGS Eight nonsynonymous substitutions throughout the viral genome of the three Brazilian isolates were identified. Infection kinetics experiments were carried out with mammalian cell lines A549, Huh7.5, Vero E6 and human monocyte-derived dendritic cells (mdDCs) and insect cells (Aag2, C6/36 and AP61) and suggest that some of these mutations might be associated with distinct viral fitness. The clinical isolates also presented differences in their infectivity rates when compared to the well-established ZIKV strains (MR766 and PE243), especially in their abilities to infect mammalian cells. MAIN CONCLUSIONS Genomic analysis of three recent ZIKV isolates revealed some nonsynonymous substitutions, which could have an impact on the viral fitness in mammalian and insect cells.


Asunto(s)
Humanos , Animales , Aedes/virología , Virus Zika/genética , Infección por el Virus Zika/virología , Ratones Endogámicos BALB C , Filogenia , Cultivo de Virus , Replicación Viral , Células Vero , Brasil , Chlorocebus aethiops , Carga Viral
19.
PLoS One ; 9(9): e108067, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25243411

RESUMEN

In addition to conventional antibodies, camelids produce immunoglobulins G composed exclusively of heavy chains in which the antigen binding site is formed only by single domains called VHH. Their particular characteristics make VHHs interesting tools for drug-delivery, passive immunotherapy and high-throughput diagnosis. Hantaviruses are rodent-borne viruses of the Bunyaviridae family. Two clinical forms of the infection are known. Hemorrhagic Fever with Renal Syndrome (HFRS) is present in the Old World, while Hantavirus Pulmonary Syndrome (HPS) is found on the American continent. There is no specific treatment for HPS and its diagnosis is carried out by molecular or serological techniques, using mainly monoclonal antibodies or hantavirus nucleoprotein (N) to detect IgM and IgG in patient serum. This study proposes the use of camelid VHHs to develop alternative methods for diagnosing and confirming HPS. Phage display technology was employed to obtain VHHs. After immunizing one Lama glama against the recombinant N protein (prNΔ85) of a Brazilian hantavirus strain, VHH regions were isolated to construct an immune library. VHHs were displayed fused to the M13KO7 phage coat protein III and the selection steps were performed on immobilized prNΔ85. After selection, eighty clones recognized specifically the N protein. These were sequenced, grouped based mainly on the CDRs, and five clones were analyzed by western blot (WB), surface plasmon resonance (SPR) device, and ELISA. Besides the ability to recognize prNΔ85 by WB, all selected clones showed affinity constants in the nanomolar range. Additionaly, the clone KC329705 is able to detect prNΔ85 in solution, as well as the native viral antigen. Findings support the hypothesis that selected VHHs could be a powerful tool in the development of rapid and accurate HPS diagnostic assays, which are essential to provide supportive care to patients and reduce the high mortality rate associated with hantavirus infections.


Asunto(s)
Camelus/inmunología , Síndrome Pulmonar por Hantavirus/diagnóstico , Fragmentos de Inmunoglobulinas/inmunología , Nucleoproteínas/inmunología , Orthohantavirus/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/biosíntesis , Diagnóstico Precoz , Síndrome Pulmonar por Hantavirus/inmunología , Humanos , Fragmentos de Inmunoglobulinas/química , Masculino , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Resonancia por Plasmón de Superficie
20.
Rev Soc Bras Med Trop ; 46(6): 783-5, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24474025

RESUMEN

INTRODUCTION: Herein, we report a one-tube, semi-nested-polymerase chain reaction (OTsn-PCR) assay for the detection of Paracoccidioides brasiliensis. METHODS: We developed the OTsn-PCR assay for the detection of P. brasiliensis in clinical specimens and compared it with other PCR methods. RESULTS: The OTsn-PCR assay was positive for all clinical samples, and the detection limit was better or equivalent to the other nested or semi-nested PCR methods for P. brasiliensis detection. CONCLUSIONS: The OTsn-PCR assay described in this paper has a detection limit similar to other reactions for the molecular detection of P. brasiliensis, but this approach is faster and less prone to contamination than other conventional nested or semi-nested PCR assays.


Asunto(s)
Paracoccidioides/aislamiento & purificación , Paracoccidioidomicosis/diagnóstico , Reacción en Cadena de la Polimerasa/métodos , ADN de Hongos/aislamiento & purificación , Humanos , Paracoccidioides/genética , Reacción en Cadena de la Polimerasa/instrumentación , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA