Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 598(7880): 368-372, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34526721

RESUMEN

Transcription-coupled DNA repair removes bulky DNA lesions from the genome1,2 and protects cells against ultraviolet (UV) irradiation3. Transcription-coupled DNA repair begins when RNA polymerase II (Pol II) stalls at a DNA lesion and recruits the Cockayne syndrome protein CSB, the E3 ubiquitin ligase, CRL4CSA and UV-stimulated scaffold protein A (UVSSA)3. Here we provide five high-resolution structures of Pol II transcription complexes containing human transcription-coupled DNA repair factors and the elongation factors PAF1 complex (PAF) and SPT6. Together with biochemical and published3,4 data, the structures provide a model for transcription-repair coupling. Stalling of Pol II at a DNA lesion triggers replacement of the elongation factor DSIF by CSB, which binds to PAF and moves upstream DNA to SPT6. The resulting elongation complex, ECTCR, uses the CSA-stimulated translocase activity of CSB to pull on upstream DNA and push Pol II forward. If the lesion cannot be bypassed, CRL4CSA spans over the Pol II clamp and ubiquitylates the RPB1 residue K1268, enabling recruitment of TFIIH to UVSSA and DNA repair. Conformational changes in CRL4CSA lead to ubiquitylation of CSB and to release of transcription-coupled DNA repair factors before transcription may continue over repaired DNA.


Asunto(s)
Microscopía por Crioelectrón , Reparación del ADN , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , ARN Polimerasa II/química , ARN Polimerasa II/ultraestructura , Transcripción Genética , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas Portadoras/ultraestructura , ADN Helicasas/química , ADN Helicasas/metabolismo , ADN Helicasas/ultraestructura , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/ultraestructura , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Humanos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/química , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/ultraestructura , ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética , Factor de Transcripción TFIIH/química , Factor de Transcripción TFIIH/metabolismo , Factor de Transcripción TFIIH/ultraestructura , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Factores de Transcripción/ultraestructura , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/ultraestructura , Ubiquitinación
2.
Nature ; 584(7819): 154-156, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32438371

RESUMEN

The new coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses an RNA-dependent RNA polymerase (RdRp) for the replication of its genome and the transcription of its genes1-3. Here we present a cryo-electron microscopy structure of the SARS-CoV-2 RdRp in an active form that mimics the replicating enzyme. The structure comprises the viral proteins non-structural protein 12 (nsp12), nsp8 and nsp7, and more than two turns of RNA template-product duplex. The active-site cleft of nsp12 binds to the first turn of RNA and mediates RdRp activity with conserved residues. Two copies of nsp8 bind to opposite sides of the cleft and position the second turn of RNA. Long helical extensions in nsp8 protrude along exiting RNA, forming positively charged 'sliding poles'. These sliding poles can account for the known processivity of RdRp that is required for replicating the long genome of coronaviruses3. Our results enable a detailed analysis of the inhibitory mechanisms that underlie the antiviral activity of substances such as remdesivir, a drug for the treatment of coronavirus disease 2019 (COVID-19)4.


Asunto(s)
Betacoronavirus/enzimología , Microscopía por Crioelectrón , ARN Viral/biosíntesis , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Betacoronavirus/efectos de los fármacos , Betacoronavirus/genética , Betacoronavirus/ultraestructura , ARN Polimerasa Dependiente de ARN de Coronavirus , Modelos Moleculares , Conformación Proteica , ARN Viral/química , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/ultraestructura , SARS-CoV-2 , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/ultraestructura
3.
Biospektrum (Heidelb) ; 27(1): 49-53, 2021.
Artículo en Alemán | MEDLINE | ID: mdl-33612990

RESUMEN

Coronaviruses use an RNA-dependent RNA polymerase to replicate and transcribe their RNA genome. The structure of the SARS-CoV-2 polymerase was determined by cryo-electron microscopy within a short time in spring 2020. The structure explains how the viral enzyme synthesizes RNA and how it replicates the exceptionally large genome in a processive manner. The most recent structure-function studies further reveal the mechanism of polymerase inhibition by remdesivir, an approved drug for the treatment of COVID-19.

4.
Nat Struct Mol Biol ; 31(3): 536-547, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316879

RESUMEN

During transcription-coupled DNA repair (TCR), RNA polymerase II (Pol II) transitions from a transcriptionally active state to an arrested state that allows for removal of DNA lesions. This transition requires site-specific ubiquitylation of Pol II by the CRL4CSA ubiquitin ligase, a process that is facilitated by ELOF1 in an unknown way. Using cryogenic electron microscopy, biochemical assays and cell biology approaches, we found that ELOF1 serves as an adaptor to stably position UVSSA and CRL4CSA on arrested Pol II, leading to ligase neddylation and activation of Pol II ubiquitylation. In the presence of ELOF1, a transcription factor IIS (TFIIS)-like element in UVSSA gets ordered and extends through the Pol II pore, thus preventing reactivation of Pol II by TFIIS. Our results provide the structural basis for Pol II ubiquitylation and inactivation in TCR.


Asunto(s)
ARN Polimerasa II , Transcripción Genética , ARN Polimerasa II/metabolismo , Reparación por Escisión , Reparación del ADN , ADN/metabolismo , Ubiquitinación , Ligasas , Receptores de Antígenos de Linfocitos T
5.
bioRxiv ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39091731

RESUMEN

Transcription-coupled DNA repair (TCR) removes bulky DNA lesions impeding RNA polymerase II (RNAPII) transcription. Recent studies have outlined the stepwise assembly of TCR factors CSB, CSA, UVSSA, and TFIIH around lesion-stalled RNAPII. However, the mechanism and factors required for the transition to downstream repair steps, including RNAPII removal to provide repair proteins access to the DNA lesion, remain unclear. Here, we identify STK19 as a new TCR factor facilitating this transition. Loss of STK19 does not impact initial TCR complex assembly or RNAPII ubiquitylation but delays lesion-stalled RNAPII clearance, thereby interfering with the downstream repair reaction. Cryo-EM and mutational analysis reveal that STK19 associates with the TCR complex, positioning itself between RNAPII, UVSSA, and CSA. The structural insights and molecular modeling suggest that STK19 positions the ATPase subunits of TFIIH onto DNA in front of RNAPII. Together, these findings provide new insights into the factors and mechanisms required for TCR.

6.
Nat Struct Mol Biol ; 30(12): 1925-1935, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37932450

RESUMEN

Elongin is a heterotrimeric elongation factor for RNA polymerase (Pol) II transcription that is conserved among metazoa. Here, we report three cryo-EM structures of human Elongin bound to transcribing Pol II. The structures show that Elongin subunit ELOA binds the RPB2 side of Pol II and anchors the ELOB-ELOC subunit heterodimer. ELOA contains a 'latch' that binds between the end of the Pol II bridge helix and funnel helices, thereby inducing a conformational change near the polymerase active center. The latch is required for the elongation-stimulatory activity of Elongin, but not for Pol II binding, indicating that Elongin functions by allosterically regulating the conformational mobility of the polymerase active center. Elongin binding to Pol II is incompatible with association of the super elongation complex, PAF1 complex and RTF1, which also contain an elongation-stimulatory latch element.


Asunto(s)
ARN Polimerasa II , Factores de Transcripción , Humanos , Elonguina/genética , Elonguina/metabolismo , Factores de Transcripción/metabolismo , ARN Polimerasa II/metabolismo , Núcleo Celular/metabolismo , Transcripción Genética
7.
Commun Biol ; 4(1): 999, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429502

RESUMEN

The coronavirus SARS-CoV-2 uses an RNA-dependent RNA polymerase (RdRp) to replicate and transcribe its genome. Previous structures of the RdRp revealed a monomeric enzyme composed of the catalytic subunit nsp12, two copies of subunit nsp8, and one copy of subunit nsp7. Here we report an alternative, dimeric form of the enzyme and resolve its structure at 5.5 Å resolution. In this structure, the two RdRps contain only one copy of nsp8 each and dimerize via their nsp7 subunits to adopt an antiparallel arrangement. We speculate that the RdRp dimer facilitates template switching during production of sub-genomic RNAs.


Asunto(s)
SARS-CoV-2/enzimología , Dimerización , Humanos , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo
8.
Nat Struct Mol Biol ; 28(9): 740-746, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34381216

RESUMEN

Molnupiravir is an orally available antiviral drug candidate currently in phase III trials for the treatment of patients with COVID-19. Molnupiravir increases the frequency of viral RNA mutations and impairs SARS-CoV-2 replication in animal models and in humans. Here, we establish the molecular mechanisms underlying molnupiravir-induced RNA mutagenesis by the viral RNA-dependent RNA polymerase (RdRp). Biochemical assays show that the RdRp uses the active form of molnupiravir, ß-D-N4-hydroxycytidine (NHC) triphosphate, as a substrate instead of cytidine triphosphate or uridine triphosphate. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural analysis of RdRp-RNA complexes that contain mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism probably applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir.


Asunto(s)
COVID-19/prevención & control , Citidina/análogos & derivados , Hidroxilaminas/metabolismo , Mutagénesis/genética , ARN Viral/genética , SARS-CoV-2/genética , Animales , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , Secuencia de Bases , COVID-19/virología , Citidina/química , Citidina/metabolismo , Citidina/farmacología , Humanos , Hidroxilaminas/química , Hidroxilaminas/farmacología , Modelos Moleculares , Estructura Molecular , Mutagénesis/efectos de los fármacos , Mutación/efectos de los fármacos , Mutación/genética , Conformación de Ácido Nucleico , Unión Proteica/efectos de los fármacos , Conformación Proteica , ARN Viral/química , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Replicación Viral/efectos de los fármacos , Replicación Viral/genética , Tratamiento Farmacológico de COVID-19
9.
Nat Commun ; 12(1): 279, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436624

RESUMEN

Remdesivir is the only FDA-approved drug for the treatment of COVID-19 patients. The active form of remdesivir acts as a nucleoside analog and inhibits the RNA-dependent RNA polymerase (RdRp) of coronaviruses including SARS-CoV-2. Remdesivir is incorporated by the RdRp into the growing RNA product and allows for addition of three more nucleotides before RNA synthesis stalls. Here we use synthetic RNA chemistry, biochemistry and cryo-electron microscopy to establish the molecular mechanism of remdesivir-induced RdRp stalling. We show that addition of the fourth nucleotide following remdesivir incorporation into the RNA product is impaired by a barrier to further RNA translocation. This translocation barrier causes retention of the RNA 3'-nucleotide in the substrate-binding site of the RdRp and interferes with entry of the next nucleoside triphosphate, thereby stalling RdRp. In the structure of the remdesivir-stalled state, the 3'-nucleotide of the RNA product is matched and located with the template base in the active center, and this may impair proofreading by the viral 3'-exonuclease. These mechanistic insights should facilitate the quest for improved antivirals that target coronavirus replication.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , ARN Polimerasa Dependiente del ARN/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , Aptámeros de Nucleótidos , ARN Polimerasa Dependiente de ARN de Coronavirus/efectos de los fármacos , Nucleótidos , ARN Viral , ARN Polimerasa Dependiente del ARN/genética , SARS-CoV-2/enzimología , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
10.
Nat Commun ; 10(1): 2885, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253769

RESUMEN

Nucleotide excision repair (NER) is the major DNA repair pathway that removes UV-induced and bulky DNA lesions. There is currently no structure of NER intermediates, which form around the large multisubunit transcription factor IIH (TFIIH). Here we report the cryo-EM structure of an NER intermediate containing TFIIH and the NER factor XPA. Compared to its transcription conformation, the TFIIH structure is rearranged such that its ATPase subunits XPB and XPD bind double- and single-stranded DNA, consistent with their translocase and helicase activities, respectively. XPA releases the inhibitory kinase module of TFIIH, displaces a 'plug' element from the DNA-binding pore in XPD, and together with the NER factor XPG stimulates XPD activity. Our results explain how TFIIH is switched from a transcription to a repair factor, and provide the basis for a mechanistic analysis of the NER pathway.


Asunto(s)
Reparación del ADN , Factor de Transcripción TFIIH/metabolismo , Adenosina Trifosfatasas , Animales , Línea Celular , Clonación Molecular , Microscopía por Crioelectrón , ADN/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Escherichia coli , Regulación de la Expresión Génica , Humanos , Insectos , Modelos Químicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Recombinantes , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismo
11.
Nat Struct Mol Biol ; 25(9): 833-840, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30127355

RESUMEN

The carboxy-terminal domain (CTD) of RNA polymerase (Pol) II is an intrinsically disordered low-complexity region that is critical for pre-mRNA transcription and processing. The CTD consists of hepta-amino acid repeats varying in number from 52 in humans to 26 in yeast. Here we report that human and yeast CTDs undergo cooperative liquid phase separation, with the shorter yeast CTD forming less-stable droplets. In human cells, truncation of the CTD to the length of the yeast CTD decreases Pol II clustering and chromatin association, whereas CTD extension has the opposite effect. CTD droplets can incorporate intact Pol II and are dissolved by CTD phosphorylation with the transcription initiation factor IIH kinase CDK7. Together with published data, our results suggest that Pol II forms clusters or hubs at active genes through interactions between CTDs and with activators and that CTD phosphorylation liberates Pol II enzymes from hubs for promoter escape and transcription elongation.


Asunto(s)
ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Quinasas Ciclina-Dependientes/metabolismo , Humanos , Fosforilación , ARN Polimerasa II/química , Secuencias Repetitivas de Aminoácido , Proteínas de Saccharomyces cerevisiae/química , Quinasa Activadora de Quinasas Ciclina-Dependientes
12.
Science ; 350(6264): 1104-7, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26612953

RESUMEN

Protein domains can fold into stable tertiary structures while they are synthesized on the ribosome. We used a high-performance, reconstituted in vitro translation system to investigate the folding of a small five-helix protein domain-the N-terminal domain of Escherichia coli N5-glutamine methyltransferase HemK-in real time. Our observations show that cotranslational folding of the protein, which folds autonomously and rapidly in solution, proceeds through a compact, non-native conformation that forms within the peptide tunnel of the ribosome. The compact state rearranges into a native-like structure immediately after the full domain sequence has emerged from the ribosome. Both folding transitions are rate-limited by translation, allowing for quasi-equilibrium sampling of the conformational space restricted by the ribosome. Cotranslational folding may be typical of small, intrinsically rapidly folding protein domains.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Biosíntesis de Proteínas , Pliegue de Proteína , Ribosomas/metabolismo , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/química , Péptidos/química , Proteína Metiltransferasas/biosíntesis , Proteína Metiltransferasas/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteolisis , Ribosomas/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA