Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(49): 30882-30891, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33288709

RESUMEN

Recent assessment reports by the Intergovernmental Panel on Climate Change (IPCC) and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) have highlighted the risks to humanity arising from the unsustainable use of natural resources. Thus far, land, freshwater, and ocean exploitation have been the chief causes of biodiversity loss. Climate change is projected to be a rapidly increasing additional driver for biodiversity loss. Since climate change and biodiversity loss impact human societies everywhere, bold solutions are required that integrate environmental and societal objectives. As yet, most existing international biodiversity targets have overlooked climate change impacts. At the same time, climate change mitigation measures themselves may harm biodiversity directly. The Convention on Biological Diversity's post-2020 framework offers the important opportunity to address the interactions between climate change and biodiversity and revise biodiversity targets accordingly by better aligning these with the United Nations Framework Convention on Climate Change Paris Agreement and the Sustainable Development Goals. We identify the considerable number of existing and proposed post-2020 biodiversity targets that risk being severely compromised due to climate change, even if other barriers to their achievement were removed. Our analysis suggests that the next set of biodiversity targets explicitly addresses climate change-related risks since many aspirational goals will not be feasible under even lower-end projections of future warming. Adopting more flexible and dynamic approaches to conservation, rather than static goals, would allow us to respond flexibly to changes in habitats, genetic resources, species composition, and ecosystem functioning and leverage biodiversity's capacity to contribute to climate change mitigation and adaptation.


Asunto(s)
Biodiversidad , Cambio Climático , Dióxido de Carbono/análisis , Conservación de los Recursos Naturales , Retroalimentación
2.
Glob Chang Biol ; 24(2): e671-e691, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29274104

RESUMEN

Marine reserves are widely used to protect species important for conservation and fisheries and to help maintain ecological processes that sustain their populations, including recruitment and dispersal. Achieving these goals requires well-connected networks of marine reserves that maximize larval connectivity, thus allowing exchanges between populations and recolonization after local disturbances. However, global warming can disrupt connectivity by shortening potential dispersal pathways through changes in larval physiology. These changes can compromise the performance of marine reserve networks, thus requiring adjusting their design to account for ocean warming. To date, empirical approaches to marine prioritization have not considered larval connectivity as affected by global warming. Here, we develop a framework for designing marine reserve networks that integrates graph theory and changes in larval connectivity due to potential reductions in planktonic larval duration (PLD) associated with ocean warming, given current socioeconomic constraints. Using the Gulf of California as case study, we assess the benefits and costs of adjusting networks to account for connectivity, with and without ocean warming. We compare reserve networks designed to achieve representation of species and ecosystems with networks designed to also maximize connectivity under current and future ocean-warming scenarios. Our results indicate that current larval connectivity could be reduced significantly under ocean warming because of shortened PLDs. Given the potential changes in connectivity, we show that our graph-theoretical approach based on centrality (eigenvector and distance-weighted fragmentation) of habitat patches can help design better-connected marine reserve networks for the future with equivalent costs. We found that maintaining dispersal connectivity incidentally through representation-only reserve design is unlikely, particularly in regions with strong asymmetric patterns of dispersal connectivity. Our results support previous studies suggesting that, given potential reductions in PLD due to ocean warming, future marine reserve networks would require more and/or larger reserves in closer proximity to maintain larval connectivity.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Calentamiento Global , Modelos Biológicos , Distribución Animal , Animales , California , Explotaciones Pesqueras , Peces , Larva/fisiología , Plancton/fisiología
3.
Glob Chang Biol ; 22(11): 3689-3701, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27178530

RESUMEN

Climate change and land-use change are two major drivers of biome shifts causing habitat and biodiversity loss. What is missing is a continental-scale future projection of the estimated relative impacts of both drivers on biome shifts over the course of this century. Here, we provide such a projection for the biodiverse region of Latin America under four socio-economic development scenarios. We find that across all scenarios 5-6% of the total area will undergo biome shifts that can be attributed to climate change until 2099. The relative impact of climate change on biome shifts may overtake land-use change even under an optimistic climate scenario, if land-use expansion is halted by the mid-century. We suggest that constraining land-use change and preserving the remaining natural vegetation early during this century creates opportunities to mitigate climate-change impacts during the second half of this century. Our results may guide the evaluation of socio-economic scenarios in terms of their potential for biome conservation under global change.


Asunto(s)
Biodiversidad , Cambio Climático , Clima , Ecosistema , América Latina
4.
Sci Total Environ ; 931: 173019, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38719034

RESUMEN

Water is a defining element for cities and their inhabitants. Throughout urban systems, water is either produced or received, used, and finally disposed of as wastewater. As Latin American urbanization accelerates, problems related to wastewater are increasing due to its inclusion as the main source of river pollution, as well as the high cost of infrastructure development and maintenance. The consequences of wastewater disposal are particularly relevant in areas frequently associated with urban expansion, like peripheries whose growth follows constant transitions between rural, peri-urban, and urban areas. Such consequences are often related to heterogeneity, lack of urban services and sanitation infrastructure, water pollution and health risks, as well as the development of informal compensatory systems. A systematic literature review was conducted to broaden research panorama and identify spatial, temporal, and thematic trends and challenges present in wastewater assessments of Latin American urban peripheries, this using the SALSA (search, appraisal, synthesis, and analysis) protocol in a search through international databases Scopus and Web of Science Scielo, in English, Spanish, French, and Portuguese. In these databases, 228 papers satisfied selection criteria and show a growing trend of publications about urban wastewater since 1988. Most case studies are from Brazil (58 %), Mexico (14 %), and Argentina (9 %). Their main approaches are quantitative research (82 %) in urban contexts (57 %). Most studies were found to be operationalized using environmental geochemistry methodologies, suggesting a dominance of technical, reductionist approaches. Integrated and mixed perspectives including actors and other societal elements are suggested as a central research challenge. Without an integrated view, it will be unfeasible to enhance decision-making processes and governance in the pursuit of sustainable water management.

5.
Ecol Evol ; 13(11): e10781, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034340

RESUMEN

Water availability significantly influences bird and mammal ecology in terrestrial ecosystems. However, our understanding of the role of water as a limiting resource for birds and mammals remains partial because most of the studies have focused on surface water bodies in desert and semi-desert ecosystems. This study assessed the use of two types of surface water bodies (waterholes and epikarst rock pools) and one arboreal (water-filled tree holes) by birds and mammals in the seasonally dry tropical forests of the Calakmul Biosphere Reserve in southern Mexico. We deployed camera traps in 23 waterholes, 22 rock pools, and 19 water-filled tree holes in this karstic region to record visits by small, medium, and large-bodied birds and mammals during the dry and rainy seasons. These cameras were set up for recording videos documenting when animals were making use of water for drinking, bathing, or both. We compared the species diversity and composition of bird and mammal assemblages using the different types of water bodies by calculating Hill numbers and conducting nonmetric multidimensional scaling (NMDS), indicator species, and contingency table analyses. There was a greater species richness of birds and mammals using surface water bodies than tree holes during both seasons. There were significant differences in species composition among bird assemblages using the different water bodies, but dominant species and diversity remained the same. Terrestrial and larger mammalian species preferentially used surface water bodies, whereas arboreal and scansorial small and medium mammals were more common in arboreal water bodies. These findings suggest that differences in water body characteristics might favor segregation in mammal activity. The different water bodies may act as alternative water sources for birds and complementary sources for mammals, potentially favoring species coexistence and increasing community resilience to environmental variation (e.g., fluctuations in water availability). Understanding how differences in water bodies favor species coexistence and community resilience is of great relevance from a basic ecological perspective but is also crucial for anticipating the effects that the increased demand for water by humans and climate change can have on wildlife viability.

6.
PLoS One ; 12(10): e0183583, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29020041

RESUMEN

The enormous global burden of vector-borne diseases disproportionately affects poor people in tropical, developing countries. Changes in vector-borne disease impacts are often linked to human modification of ecosystems as well as climate change. For tropical ecosystems, the health impacts of future environmental and developmental policy depend on how vector-borne disease risks trade off against other ecosystem services across heterogeneous landscapes. By linking future socio-economic and climate change pathways to dynamic land use models, this study is amongst the first to analyse and project impacts of both land use and climate change on continental-scale patterns in vector-borne diseases. Models were developed for cutaneous and visceral leishmaniasis in the Americas-ecologically complex sand fly borne infections linked to tropical forests and diverse wild and domestic mammal hosts. Both diseases were hypothesised to increase with available interface habitat between forest and agricultural or domestic habitats and with mammal biodiversity. However, landscape edge metrics were not important as predictors of leishmaniasis. Models including mammal richness were similar in accuracy and predicted disease extent to models containing only climate and land use predictors. Overall, climatic factors explained 80% and land use factors only 20% of the variance in past disease patterns. Both diseases, but especially cutaneous leishmaniasis, were associated with low seasonality in temperature and precipitation. Since such seasonality increases under future climate change, particularly under strong climate forcing, both diseases were predicted to contract in geographical extent to 2050, with cutaneous leishmaniasis contracting by between 35% and 50%. Whilst visceral leishmaniasis contracted slightly more under strong than weak management for carbon, biodiversity and ecosystem services, future cutaneous leishmaniasis extent was relatively insensitive to future alternative socio-economic pathways. Models parameterised at narrower geographical scales may be more sensitive to land use pattern and project more substantial changes in disease extent under future alternative socio-economic pathways.


Asunto(s)
Cambio Climático , Enfermedades Transmisibles/epidemiología , Vectores de Enfermedades , Leishmaniasis/epidemiología , Animales , Ambiente , Geografía , Incidencia , Modelos Biológicos , Probabilidad , Factores Socioeconómicos , América del Sur
7.
PLoS One ; 10(3): e0121203, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25803839

RESUMEN

Using publicly available data on land use and transportation corridors we calculated the human footprint index for the whole of Mexico to identify large-scale spatial patterns in the anthropogenic transformation of the land surface. We developed a map of the human footprint for the whole country and identified the ecological regions that have most transformed by human action. Additionally, we analyzed the extent to which (a) physical geography, expressed spatially in the form of biomes and ecoregions, compared to (b) historical geography, expressed as the spatial distribution of past human settlements, have driven the patterns of human modification of the land. Overall Mexico still has 56% of its land surface with low impact from human activities, but these areas are not evenly distributed. The lowest values are on the arid north and northwest, and the tropical southeast, while the highest values run along the coast of the Gulf of Mexico and from there inland along an east-to-west corridor that follows the Mexican transversal volcanic ranges and the associated upland plateau. The distribution of low- and high footprint areas within ecoregions forms a complex mosaic: the generally well-conserved Mexican deserts have some highly transformed agro-industrial areas, while many well-conserved, low footprint areas still persist in the highly-transformed ecoregions of central Mexico. We conclude that the spatial spread of the human footprint in Mexico is both the result of the limitations imposed by physical geography to human development at the biome level, and, within different biomes, of a complex history of past civilizations and technologies, including the 20th Century demographic explosion but also the spatial pattern of ancient settlements that were occupied by the Spanish Colony.


Asunto(s)
Demografía/estadística & datos numéricos , Mapeo Geográfico , Geografía/métodos , Actividades Humanas/estadística & datos numéricos , Modelos Teóricos , Humanos , México
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA