Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(11): 7288-7294, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38456796

RESUMEN

The strongly electron-donating N-heterocyclic imines (NHIs) have been employed as excellent surface anchors for the thermodynamic stabilization of electron-deficient species due to their enhanced nucleophilicity. However, the binding mode and interfacial property of these new ligands are still unclear, representing a bottleneck for advanced applications in surface functionalization and catalysis. Here, NHIs with different side groups have been rationally designed, synthesized, and analyzed on various metal surfaces (Cu, Ag). Our results reveal different binding modes depending on the molecular structure and metal surface. The molecular design enables us to achieve a flat-lying or upright configuration and even a transition between these two binding modes depending on the coverage and time. Importantly, the two binding modes exhibit different degrees of interfacial charge transfer between the molecule and the surface. This study provides essential microscopic insight into the NHI adsorption geometry and interfacial charge transfer for the optimization of heterogeneous catalysts in coordination chemistry.

2.
Angew Chem Int Ed Engl ; 63(13): e202318126, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38275271

RESUMEN

2-Acetonaphthones, which bear an alkenyl group tethered to its C1 carbon atom via an oxygen atom, were found to undergo an enantioselective intramolecular ortho photocycloaddition reaction. A chiral oxazaborolidine Lewis acid leads to a bathochromic absorption shift of the substrate and enables an efficient enantioface differentiation. Visible light irradiation (λ=450 nm) triggers the reaction which is tolerant of various groups at almost any position except carbon atom C8 (16 examples, 53-99 % yield, 80-97 % ee). Consecutive reactions were explored including a sensitized rearrangement to tetrahydrobiphenylenes, which occurred with full retention of configuration. Evidence was collected that the catalytic photocycloaddition occurs via triplet intermediates, and the binding mode of the acetonaphthone to the chiral Lewis acid was elucidated by DFT calculations.

3.
Phys Chem Chem Phys ; 23(8): 4728-4735, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33598666

RESUMEN

Photo-responsive molecular motors incorporated in soft porous materials enable the amplification of the motion of individual motor units by employing their collective and cooperative behavior. Metal-organic frameworks (MOFs) provide in this regard, due to their structural diversity and modular assembly, a unique matrix to construct well-defined and systematically tunable molecular environments for the embedding of molecular motors. However, despite advances in the development of such photo-responsive functional materials, a thorough understanding of the governing interactions at the atomic scale has been missing so far, limiting the possibility of predicting and fully exploring the potential of these assembled machineries. Here, we present a conformational study to unravel the collective structural behavior and elucidate the impact of motor-motor interactions on the local and global properties of the scaffold. In particular, our work highlights the impact of full conversion of the embedded molecular motors on the overall network topology of the MotorMOF and thus acts as a benchmark for future studies to further explore the correlation of responsive building units with the resulting functionality of these hierarchical systems.

4.
Chemistry ; 26(6): 1263-1268, 2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-31802550

RESUMEN

Photoresponsive functional materials have gained increasing attention due to their externally tunable properties. Molecular switches embedded in these materials enable the control of phenomena at the atomic level by light. Metal-organic frameworks (MOFs) provide a versatile platform to immobilize these photoresponsive units within defined molecular environments to optimize the intended functionality. For the application of these photoresponsive MOFs (pho-MOFs), it is crucial to understand the influence of the switching state on the host-guest interaction. Therefore, we present a detailed insight into the impact of molecular switching on the intermolecular interactions. By performing atomistic simulations, we revealed that due to different interactions of the guest molecules with the two isomeric states of an azobenzene-functionalized MOF, both the adsorption sites and the orientation of the molecules within the pores are modulated. By shedding light on the host-guest interaction, our study highlights the unique potential of pho-MOFs to tailor molecular interaction by light.

5.
Angew Chem Int Ed Engl ; 59(32): 13643-13646, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32267051

RESUMEN

The structural properties and binding motif of a strongly σ-electron-donating N-heterocyclic carbene have been investigated on different transition-metal surfaces. The examined cyclic (alkyl)(amino)carbene (CAAC) was found to be mobile on surfaces, and molecular islands with short-range order could be found at high coverage. A combination of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations highlights how CAACs bind to the surface, which is of tremendous importance to gain an understanding of heterogeneous catalysts bearing CAACs as ligands.

6.
J Am Chem Soc ; 140(38): 11889-11892, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30203975

RESUMEN

Tuning the binding mode of N-heterocyclic carbenes on metal surfaces is crucial for the development of new functional materials. To understand the impact of alkyl side groups on the formation of NHC species at the Au(111) surface, we combined scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory calculations. We reveal two significantly different binding modes depending on the alkyl chain length. In the case of a short alkyl substituent, an up-standing configuration with one Au adatom is preferred, whereas the longer alkyl groups result exclusively in NHC-Au-NHC complexes lying flat on the surface. Our study highlights how well-defined structural modifications of NHCs allow for controlling the local binding motif on surfaces, which is important to design designated catalytic sites at interfaces.

7.
J Chem Theory Comput ; 19(19): 6643-6655, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37775093

RESUMEN

A widely used strategy to reduce the computational cost of quantum-chemical calculations is to partition the system into an active subsystem, which is the focus of the computational efforts, and an environment that is treated at a lower computational level. The system partitioning is mostly based on localized molecular orbitals. When reaction paths or energy differences are to be calculated, it is crucial to keep the orbital space consistent for all structures. Inconsistencies in orbital space can lead to unpredictable errors on the potential energy surface. While successful strategies to ensure this consistency have been established for organic and even metal-organic systems, these methods often fail for metal clusters or nanoparticles with a high density of near-degenerate and delocalized molecular orbitals. However, such systems are highly relevant for catalysis. Accurate yet feasible quantum-mechanical ab initio calculations are therefore highly desired. In this work, we present an approach based on the subsystem projected atomic orbital decomposition algorithm that allows us to ensure automated and consistent partitioning even for systems with delocalized and near-degenerate molecular orbitals and demonstrate the validity of this method for the binding energies of small molecules on transition-metal clusters.

8.
Sci Adv ; 8(26): eabn4426, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35776789

RESUMEN

Molecular machines enable external control of structural and dynamic phenomena at the atomic level. To efficiently transfer their tunable properties into designated functionalities, a detailed understanding of the impact of molecular embedding is needed. In particular, a comprehensive insight is fundamental to design hierarchical multifunctional systems that are inspired by biological cells. Here, we applied an on-the-fly trained force field to perform atomistic simulations of a systematically modified rotaxane functionalized metal-organic framework. Our atomistic studies reveal a symmetric and asymmetric interplay of the mechanically bonded rings (MBRs) within the framework depending on the local environment. As a result, their translational motion is modulated ranging from fast oscillatory behavior to cooperative and potentially directed shuttling. The derived picture of competitive interactions, which influence the operation mechanism of the MBRs embedded in these soft porous materials, promotes the development of responsive functional materials, which is a key step toward intelligent matter.

9.
J Chem Theory Comput ; 17(11): 7010-7020, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34613742

RESUMEN

Mechanically interlocked molecules have gained significant attention because of their unique ability to perform well-defined motions originating from their entanglement, which is important for the design of artificial molecular machines. Atomistic simulations based on force fields (FFs) provide detailed insights into such architectures at the molecular level enabling one to predict the resulting functionalities. However, the development of reliable FFs is still challenging and time-consuming, in particular for highly dynamic and interlocked structures such as rotaxanes, which exhibit a large number of different conformers. In the present work, we present an on-the-fly training (OTFT) algorithm. By a guided and nonguided phase space sampling, relevant reference data are automatically and continuously generated and included for the on-the-fly parametrization of the FF based on a population swapping genetic algorithm (psGA). The OTFT approach provides a fast and automated FF parametrization scheme and tackles problems caused by missing phase space information or the need for big data. We demonstrate the high accuracy of the developed FF for flexible molecules with respect to equilibrium and out-of-equilibrium properties. Finally, by applying the ab initio parametrized FF, molecular dynamic simulations were performed up to experimentally relevant time scales (ca. 1 µs) enabling capture in detail of the structural evaluation and mapping out of the free-energy topology. The on-the-fly training approach thus provides a strong foundation toward automated FF developments and large-scale investigations of phenomena in and out of thermal equilibrium.

10.
Nanoscale Adv ; 3(22): 6373-6378, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36133488

RESUMEN

Molecular spatial conformational evolution following the corresponding chemical reaction pathway at surfaces is important to understand and optimize chemical processes. Combining experimental and theoretical methods, the sequential N-H and C-H dehydrogenation of pyromellitic diimide (PMDI) on a Cu(111) surface are reported. STM experiments and atomistic modeling allow structural analysis at each well-defined reaction step. First, exclusively the aromatic N-H dehydrogenation of the imide group is observed. Subsequently, the C-H group at the benzene core of PMDI gets activated leading to a dehydrogenation reaction forming metalorganic species where Cu adatoms pronouncedly protruding from the surface are coordinated by one or two PMDI ligands at the surface. All reactions of PMDI induce conformational changes at the surface as confirmed by STM imaging and DFT simulations. Such conformational evolution in sequential N-H and C-H activation provides a detailed insight to understand molecular dehydrogenation processes at surfaces.

11.
J Phys Chem B ; 124(48): 10879-10888, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33174753

RESUMEN

In response to external stimuli, molecular motors enable to control phenomena at the molecular scale with high precision. In order to utilize their unique properties and to gain designated functionalities, their molecular embedding is important. Despite the great progress in the development of corresponding functional materials, a detailed picture of how the structural and dynamic properties of these responsive molecular units are transferred to a macroscopic outcome is so-far missing. Here, we provide an atomistic insight into the solvation dynamics around a light-driven molecular motor. By performing molecular dynamic simulations based on an ab initio parametrized and validated force field, we elucidate in detail the intermolecular interactions depending on the state of the motor. Detailed analysis of the solvation shells revealed the impact on both the location of the primary interaction sites and the orientation of the solvent molecules with respect to the molecular motor. Furthermore, we studied the influence of structural modifications of the molecular motor on its local environment. By investigating the motor-solvent interaction, our results provide a strong foundation to decipher the ability of molecular machines to specifically alter molecular processes, which is fundamental to predict and tailor the resulting macroscopic functionality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA