Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35165193

RESUMEN

Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.


Asunto(s)
Ríos/química , Contaminación Química del Agua/análisis , Contaminación Química del Agua/prevención & control , Ecosistema , Exposición a Riesgos Ambientales , Monitoreo del Ambiente , Humanos , Preparaciones Farmacéuticas , Aguas Residuales/análisis , Aguas Residuales/química , Agua/análisis , Agua/química , Contaminantes Químicos del Agua/análisis
2.
Environ Sci Technol ; 58(5): 2468-2478, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38252456

RESUMEN

Wastewater is a source for many contaminants of emerging concern (CECs), and surface waters receiving wastewater discharge often serve as source water for downstream drinking water treatment plants. Nontargeted analysis and suspect screening methods were used to characterize chemicals in residence-time-weighted grab samples and companion polar organic chemical integrative samplers (POCIS) collected on three separate hydrologic sampling events along a surface water flow path representative of de facto water reuse. The goal of this work was to examine the fate of CECs along the study flow path as water is transported from wastewater effluent through drinking water treatment. Grab and POCIS samples provided a comparison between residence-time-weighted single-point and integrative sample results. This unique and rigorous study design, coupled with advanced analytical chemistry tools, provided important insights into chemicals found in drinking water and their potential sources, which can be used to help prioritize chemicals for further study. K-means clustering analysis was used to identify patterns in chemical occurrences across both sampling sites and sampling events. Chemical features that occurred frequently or survived drinking water treatment were prioritized for identification, resulting in the probable identification of over 100 CECs in the watershed and 28 CECs in treated drinking water.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Agua Potable/análisis , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Compuestos Orgánicos/análisis
3.
Environ Sci Technol ; 57(1): 321-330, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36573799

RESUMEN

Conservation efforts have been implemented in agroecosystems to enhance pollinator diversity by creating grassland habitat, but little is known about the exposure of bees to pesticides while foraging in these grassland fields. Pesticide exposure was assessed in 24 conservation grassland fields along an agricultural gradient at two time points (July and August) using silicone band passive samplers (nonlethal) and bee tissues (lethal). Overall, 46 pesticides were detected including 9 herbicides, 19 insecticides, 17 fungicides, and a plant growth regulator. For the bands, there were more frequent/higher concentrations of herbicides in July (maximum: 1600 ng/band in July; 570 ng/band in August), while insecticides and fungicides had more frequent/higher concentrations in August (maximum: 110 and 65 ng/band in July; 1500 and 1700 ng/band in August). Pesticide concentrations in bands increased 16% with every 10% increase in cultivated crops. The bee tissues showed no difference in detection frequency, and concentrations were similar among months; maximum concentrations of herbicides, insecticides, and fungicides in July and August were 17, 27, and 180 and 19, 120, and 170 ng/g, respectively. Pesticide residues in bands and bee tissues did not always show the same patterns; of the 20 compounds observed in both media, six (primarily fungicides) showed a detection-concentration relationship between the two media. Together, the band and bee residue data can provide a more complete understanding of pesticide exposure and accumulation in conserved grasslands.


Asunto(s)
Fungicidas Industriales , Herbicidas , Insecticidas , Plaguicidas , Abejas , Animales , Plaguicidas/análisis , Fungicidas Industriales/análisis , Pradera
4.
Environ Sci Technol ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36626647

RESUMEN

Global demand for safe and sustainable water supplies necessitates a better understanding of contaminant exposures in potential reuse waters. In this study, we compared exposures and load contributions to surface water from the discharge of three reuse waters (wastewater effluent, urban stormwater, and agricultural runoff). Results document substantial and varying organic-chemical contribution to surface water from effluent discharges (e.g., disinfection byproducts [DBP], prescription pharmaceuticals, industrial/household chemicals), urban stormwater (e.g., polycyclic aromatic hydrocarbons, pesticides, nonprescription pharmaceuticals), and agricultural runoff (e.g., pesticides). Excluding DBPs, episodic storm-event organic concentrations and loads from urban stormwater were comparable to and often exceeded those of daily wastewater-effluent discharges. We also assessed if wastewater-effluent irrigation to corn resulted in measurable effects on organic-chemical concentrations in rain-induced agricultural runoff and harvested feedstock. Overall, the target-organic load of 491 g from wastewater-effluent irrigation to the study corn field during the 2019 growing season did not produce substantial dissolved organic-contaminant contributions in subsequent rain-induced runoff events. Out of the 140 detected organics in source wastewater-effluent irrigation, only imidacloprid and estrone had concentrations that resulted in observable differences between rain-induced agricultural runoff from the effluent-irrigated and nonirrigated corn fields. Analyses of pharmaceuticals and per-/polyfluoroalkyl substances in at-harvest corn-plant samples detected two prescription antibiotics, norfloxacin and ciprofloxacin, at concentrations of 36 and 70 ng/g, respectively, in effluent-irrigated corn-plant samples; no contaminants were detected in noneffluent irrigated corn-plant samples.

5.
Environ Sci Technol ; 56(2): 845-861, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34978800

RESUMEN

River waters contain complex chemical mixtures derived from natural and anthropogenic sources. Aquatic organisms are exposed to the entire chemical composition of the water, resulting in potential effects at the organismal through ecosystem level. This study applied a holistic approach to assess landscape, hydrological, chemical, and biological variables. On-site mobile laboratory experiments were conducted to evaluate biological effects of exposure to chemical mixtures in the Shenandoah River Watershed. A suite of 534 inorganic and organic constituents were analyzed, of which 273 were detected. A watershed-scale accumulated wastewater model was developed to predict environmental concentrations of chemicals derived from wastewater treatment plants (WWTPs) to assess potential aquatic organism exposure for all stream reaches in the watershed. Measured and modeled concentrations generally were within a factor of 2. Ecotoxicological effects from exposure to individual components of the chemical mixture were evaluated using risk quotients (RQs) based on measured or predicted environmental concentrations and no effect concentrations or chronic toxicity threshold values. Seventy-two percent of the compounds had RQ values <0.1, indicating limited risk from individual chemicals. However, when individual RQs were aggregated into a risk index, most stream reaches receiving WWTP effluent posed potential risk to aquatic organisms from exposure to complex chemical mixtures.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Organismos Acuáticos , Ecosistema , Monitoreo del Ambiente , Ríos/química , Aguas Residuales , Contaminantes Químicos del Agua/toxicidad
6.
Environ Sci Technol ; 56(2): 1028-1040, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34967600

RESUMEN

Process wastewaters from food, beverage, and feedstock facilities, although regulated, are an under-investigated environmental contaminant source. Food process wastewaters (FPWWs) from 23 facilities in 17 U.S. states were sampled and documented for a plethora of chemical and microbial contaminants. Of the 576 analyzed organics, 184 (32%) were detected at least once, with concentrations as large as 143 µg L-1 (6:2 fluorotelomer sulfonic acid), and as many as 47 were detected in a single FPWW sample. Cumulative per/polyfluoroalkyl substance concentrations up to 185 µg L-1 and large pesticide transformation product concentrations (e.g., methomyl oxime, 40 µg L-1; clothianidin TMG, 2.02 µg L-1) were observed. Despite 48% of FPWW undergoing disinfection treatment prior to discharge, bacteria resistant to third-generation antibiotics were found in each facility type, and multiple bacterial groups were detected in all samples, including total coliforms. The exposure-activity ratios and toxicity quotients exceeded 1.0 in 13 and 22% of samples, respectively, indicating potential biological effects and toxicity to vertebrates and invertebrates associated with the discharge of FPWW. Organic contaminant profiles of FPWW differed from previously reported contaminant profiles of municipal effluents and urban storm water, indicating that FPWW is another important source of chemical and microbial contaminant mixtures discharged into receiving surface waters.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Animales , Bebidas , Monitoreo del Ambiente , Ríos/química , Aguas Residuales/química , Contaminantes Químicos del Agua/toxicidad
7.
Environ Sci Technol ; 55(3): 1345-1353, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33433195

RESUMEN

Agricultural production and associated applications of nitrogen (N) fertilizers have increased dramatically in the last century, and current projections to 2050 show that demands will continue to increase as the human population grows. Applied in both organic and inorganic fertilizer forms, N is an essential nutrient in crop productivity. Increased fertilizer applications, however, create the potential for more N loss before plant uptake. One strategy for minimizing N loss is the use of enhanced efficiency fertilizers, fortified with a nitrification inhibitor, such as nitrapyrin. In soils and water, nitrapyrin inhibits the activity of ammonia monooxygenase, a microbial enzyme that catalyzes the first step of nitrification from ammonium to nitrite. Potential benefits of using nitrification inhibitors range from reduced nitrate leaching and nitrous oxide emissions to increased crop yield. The extent of these benefits, however, depends on environmental conditions and management practices. Thus, such benefits are not always realized. Additionally, nitrapyrin has been shown to transport off-field, and it is unknown what effects environmental nitrapyrin could have on nontarget organisms and the ecological nitrogen cycle. Here, we review the agronomic and environmental benefits and costs of nitrapyrin use and present a series of research questions and considerations to be addressed with future nitrification inhibitor research.


Asunto(s)
Ecosistema , Nitrificación , Agricultura , Análisis Costo-Beneficio , Salud Ambiental , Fertilizantes/análisis , Humanos , Nitrógeno/análisis , Óxido Nitroso/análisis , Picolinas , Suelo
8.
Environ Sci Technol ; 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34342221

RESUMEN

Phytotoxins are naturally produced toxins with potencies similar/higher than many anthropogenic micropollutants. Nevertheless, little is known regarding their environmental fate and off-field transport to streams. To fill this research gap, a network of six basins in the Midwestern United States with substantial soybean production was selected for the study. Stream water (n = 110), soybean plant tissues (n = 8), and soil samples (n = 16) were analyzed for 12 phytotoxins (5 alkaloids and 7 phytoestrogens) and 2 widely used herbicides (atrazine and metolachlor). Overall, at least 1 phytotoxin was detected in 82% of the samples, with as many as 11 phytotoxins detected in a single sample (median = 5), with a concentration range from below detection to 37 and 68 ng/L for alkaloids and phytoestrogens, respectively. In contrast, the herbicides were ubiquitously detected at substantially higher concentrations (atrazine: 99% and metolachlor: 83%; the concentrations range from below detection to 150 and 410 ng/L, respectively). There was an apparent seasonal pattern for phytotoxins, where occurrence prior to and during harvest season (September to November) and during the snow melt season (March) was higher than that in December-January. Runoff events increased phytotoxin and herbicide concentrations compared to those in base-flow conditions. Phytotoxin plant concentrations were orders of magnitude higher compared to those measured in soil and streams. These results demonstrate the potential exposure of aquatic and terrestrial organisms to soybean-derived phytotoxins.

9.
Environ Sci Technol ; 54(20): 12967-12978, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32960577

RESUMEN

Effluent-dominated streams are becoming increasingly common in temperate regions and generate complex pharmaceutical mixture exposure conditions that may impact aquatic organisms via drug-drug interactions. Here, we quantified spatiotemporal pharmaceutical exposure concentrations and composition mixture dynamics during baseflow conditions at four sites in a temperate-region effluent-dominated stream (upstream, at, and progressively downstream from effluent discharge). Samples were analyzed monthly for 1 year for 109 pharmaceuticals/degradates using a comprehensive U.S. Geological Survey analytical method and biweekly for 2 years focused on 14 most common pharmaceuticals/degradates. We observed a strong chemical gradient with pharmaceuticals only sporadically detected upstream from the effluent. Seventy-four individual pharmaceuticals/degradates were detected, spanning 5 orders of magnitude from 0.28 to 13 500 ng/L, with 38 compounds detected in >50% of samples. "Biweekly" compounds represented 77 ± 8% of the overall pharmaceutical concentration. The antidiabetic drug metformin consistently had the highest concentration with limited in-stream attenuation. The antihistamine drug fexofenadine inputs were greater during warm- than cool-season conditions but also attenuated faster. Differential attenuation of individual pharmaceuticals (i.e., high = citalopram; low = metformin) contributed to complex mixture evolution along the stream reach. This research demonstrates that variable inputs over multiple years and differential in-stream attenuation of individual compounds generate evolving complex mixture exposure conditions for biota, with implications for interactive effects.


Asunto(s)
Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Organismos Acuáticos , Monitoreo del Ambiente , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
10.
Environ Sci Technol ; 54(11): 6703-6712, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32343558

RESUMEN

To improve the performance of polymeric electrospun nanofiber mats (ENMs) for equilibrium passive sampling applications in water, we integrated two types of multiwalled carbon nanotubes (CNTs; with and without surface carboxyl groups) into polyacrylonitrile (PAN) and polystyrene (PS) ENMs. For 11 polar and moderately hydrophobic compounds (-0.07 ≤ logKOW ≤ 3.13), 90% of equilibrium uptake was achieved in under 0.8 days (t90% values) in nonmixed ENM-CNT systems. Sorption capacity of ENM-CNTs was between 2- and 50-fold greater than pure polymer ENMs, with equilibrium partition coefficients (KENM-W values) ranging from 1.4 to 3.1 log units (L/kg) depending on polymer type (hydrophilic PAN or hydrophobic PS), CNT loading (i.e., values increased with weight percent (wt %) of CNTs), and CNT type (i.e., greater uptake with carboxylated CNTs composites). During field deployment at Muddy Creek in North Liberty, Iowa, optimal ENM-CNTs (PAN with 20 wt % carboxylated CNTs) yielded atrazine concentrations in surface water with a 40% difference relative to analysis of a same-day grab sample. We also observed a mean percent difference of 30 (±20)% when comparing ENM-CNT sampler results to grab sample data collected within 1 week of deployment. With their rapid, high capacity uptake and small material footprint, ENM-CNT equilibrium passive samplers represent a promising alternative to complement traditional integrative passive samplers while offering convenience over large volume grab sampling.


Asunto(s)
Nanofibras , Nanotubos de Carbono , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Iowa , Polímeros , Contaminantes Químicos del Agua/análisis
11.
Environ Sci Technol ; 53(15): 8611-8620, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31287672

RESUMEN

In a recent U.S. Geological Survey/U.S. Environmental Protection Agency study assessing more than 700 organic compounds in 38 streams, in vitro assays indicated generally low estrogen, androgen, and glucocorticoid receptor activities, with 13 surface waters with 17ß-estradiol-equivalent (E2Eq) activities greater than a 1-ng/L estimated effects-based trigger value for estrogenic effects in male fish. Among the 36 samples assayed for mutagenicity in the Salmonella bioassay (reported here), 25% had low mutagenic activity and 75% were not mutagenic. Endocrine and mutagenic activities of the water samples were well correlated with each other and with the total number and cumulative concentrations of detected chemical contaminants. To test the predictive utility of knowledge-base-leveraging approaches, site-specific predicted chemical-gene (pCGA) and predicted analogous pathway-linked (pPLA) association networks identified in the Comparative Toxicogenomics Database were compared with observed endocrine/mutagenic bioactivities. We evaluated pCGA/pPLA patterns among sites by cluster analysis and principal component analysis and grouped the pPLA into broad mode-of-action classes. Measured E2eq and mutagenic activities correlated well with predicted pathways. The pPLA analysis also revealed correlations with signaling, metabolic, and regulatory groups, suggesting that other effects pathways may be associated with chemical contaminants in these waters and indicating the need for broader bioassay coverage to assess potential adverse impacts.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Animales , Bioensayo , Monitoreo del Ambiente , Estrógenos , Masculino , Pruebas de Mutagenicidad , Mutágenos
12.
Environ Sci Technol ; 53(17): 10070-10081, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31432661

RESUMEN

Increasing global reliance on stormwater control measures to reduce discharge to surface water, increase groundwater recharge, and minimize contaminant delivery to receiving waterbodies necessitates improved understanding of stormwater-contaminant profiles. A multiagency study of organic and inorganic chemicals in urban stormwater from 50 runoff events at 21 sites across the United States demonstrated that stormwater transports substantial mixtures of polycyclic aromatic hydrocarbons, bioactive contaminants (pesticides and pharmaceuticals), and other organic chemicals known or suspected to pose environmental health concern. Numerous organic-chemical detections per site (median number of chemicals detected = 73), individual concentrations exceeding 10 000 ng/L, and cumulative concentrations up to 263 000 ng/L suggested concern for potential environmental effects during runoff events. Organic concentrations, loads, and yields were positively correlated with impervious surfaces and highly developed urban catchments. Episodic storm-event organic concentrations and loads were comparable to and often exceeded those of daily wastewater plant discharges. Inorganic chemical concentrations were generally dilute in concentration and did not exceed chronic aquatic life criteria. Methylmercury was measured in 90% of samples with concentrations that ranged from 0.05 to 1.0 ng/L.


Asunto(s)
Agua Subterránea , Plaguicidas , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Lluvia , Estados Unidos
13.
Environ Sci Technol ; 52(13): 7513-7523, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29901991

RESUMEN

Anthropogenic chemicals have been proposed as potential markers of human fecal contamination in recreational water. However, to date, there are no published studies describing their relationships with illness risks. Using a cohort of swimmers at seven U.S. beaches, we examined potential associations between the presence of chemical markers of human fecal pollution and self-reported gastrointestinal (GI) illness, diarrhea, and respiratory illness. Swimmers were surveyed about their beach activities, water exposure, and baseline symptoms on the day of their beach visit, and about any illness experienced 10-12 days later. Risk differences were estimated using model-based standardization and adjusted for the swimmer's age, beach site, sand contact, rainfall, and water temperature. Sixty-two chemical markers were analyzed from daily water samples at freshwater and marine beaches. Of those, 20 were found consistently. With the possible exception of bisphenol A and cholesterol, no chemicals were consistently associated with increased risks of illness. These two chemicals were suggestively associated with 2% and 1% increased risks of GI illness and diarrhea in both freshwater and marine beaches. Additional research using the more sensitive analytic methods currently available for a wider suite of analytes is needed to support the use of chemical biomarkers to quantify illness risk and identify fecal pollution sources.


Asunto(s)
Playas , Microbiología del Agua , Biomarcadores , Heces , Humanos , Autoinforme
14.
Environ Sci Technol ; 52(23): 13972-13985, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30460851

RESUMEN

Safe drinking water at the point-of-use (tapwater, TW) is a United States public health priority. Multiple lines of evidence were used to evaluate potential human health concerns of 482 organics and 19 inorganics in TW from 13 (7 public supply, 6 private well self-supply) home and 12 (public supply) workplace locations in 11 states. Only uranium (61.9 µg L-1, private well) exceeded a National Primary Drinking Water Regulation maximum contaminant level (MCL: 30 µg L-1). Lead was detected in 23 samples (MCL goal: zero). Seventy-five organics were detected at least once, with median detections of 5 and 17 compounds in self-supply and public supply samples, respectively (corresponding maxima: 12 and 29). Disinfection byproducts predominated in public supply samples, comprising 21% of all detected and 6 of the 10 most frequently detected. Chemicals designed to be bioactive (26 pesticides, 10 pharmaceuticals) comprised 48% of detected organics. Site-specific cumulative exposure-activity ratios (∑EAR) were calculated for the 36 detected organics with ToxCast data. Because these detections are fractional indicators of a largely uncharacterized contaminant space, ∑EAR in excess of 0.001 and 0.01 in 74 and 26% of public supply samples, respectively, provide an argument for prioritized assessment of cumulative effects to vulnerable populations from trace-level TW exposures.


Asunto(s)
Agua Potable , Plaguicidas , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Humanos , Estados Unidos , Abastecimiento de Agua , Lugar de Trabajo
15.
J Am Water Works Assoc ; 110(4): E2-E18, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36999079

RESUMEN

De facto reuse is the percentage of drinking water treatment plant (DWTP) intake potentially composed of effluent discharged from upstream wastewater treatment plants (WWTPs). Results from grab samples and a De Facto Reuse in our Nation's Consumable Supply (DRINCS) geospatial watershed model were used to quantify contaminants of emerging concern (CECs) concentrations at DWTP intakes to qualitatively compare exposure risks obtained by the two approaches. Between nine and 71 CECs were detected in grab samples. The number of upstream WWTP discharges ranged from 0 to >1,000; comparative de facto reuse results from DRINCS ranged from <0.1 to 13% during average flow and >80% during lower streamflows. Correlation between chemicals detected and DRINCS modeling results were observed, particularly DWTPs withdrawing from midsize water bodies. This comparison advances the utility of DRINCS to identify locations of DWTPs for future CEC sampling and treatment technology testing.

16.
Environ Sci Technol ; 51(8): 4434-4444, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28319370

RESUMEN

The increasing use of pharmaceuticals has led to their subsequent input into and release from wastewater treatment plants, with corresponding discharge into surface waters that may subsequently exert adverse effects upon aquatic organisms. Although the distribution of pharmaceuticals in surface water has been extensively studied, the details of uptake, internal distribution, and kinetic processing of pharmaceuticals in exposed fish have received less attention. For this research, we investigated the uptake, disposition, and toxicokinetics of five pharmaceuticals (diclofenac, methocarbamol, rosuvastatin, sulfamethoxazole, and temazepam) in bluegill sunfish (Lepomis macrochirus) exposed to environmentally relevant concentrations (1000-4000 ng L-1) in a flow-through exposure system. Temazepam and methocarbamol were consistently detected in bluegill biological samples with the highest concentrations in bile of 4, 940, and 180 ng g-1, respectively, while sulfamethoxazole, diclofenac, and rosuvastatin were only infrequently detected. Over 30-day exposures, the relative magnitude of mean concentrations of temazepam and methocarbamol in biological samples generally followed the order: bile ≫ gut > liver and brain > muscle, plasma, and gill. Ranges of bioconcentration factors (BCFs) in different biological samples were 0.71-3960 and 0.13-48.6 for temazepam and methocarbamol, respectively. Log BCFs were statistically positively correlated to pH adjusted log Kow (that is, log Dow), with the strongest relations for liver and brain (r2 = 0.92 and 0.99, respectively), implying that bioconcentration patterns of ionizable pharmaceuticals depend on molecular status, that is, whether a pharmaceutical is un-ionized or ionized at ambient tissue pH. Methocarbamol and temazepam underwent rapid uptake and elimination in bluegill biological compartments with uptake rate constants (Ku) and elimination rate constants (Ke) at 0.0066-0.0330 h-1 and 0.0075-0.0384 h-1, respectively, and half-lives at 18.1-92.4 h. Exposure to mixtures of diclofenac, methocarbamol, sulfamethoxazole, and temazepam had little or no influence on the uptake and elimination rates, suggesting independent multiple uptake and disposition behaviors of pharmaceuticals by fish would occur when exposed to effluent-influenced surface waters.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Animales , Peces , Perciformes , Sulfametoxazol
17.
Environ Sci Technol ; 51(9): 4792-4802, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28401767

RESUMEN

Surface water from 38 streams nationwide was assessed using 14 target-organic methods (719 compounds). Designed-bioactive anthropogenic contaminants (biocides, pharmaceuticals) comprised 57% of 406 organics detected at least once. The 10 most-frequently detected anthropogenic-organics included eight pesticides (desulfinylfipronil, AMPA, chlorpyrifos, dieldrin, metolachlor, atrazine, CIAT, glyphosate) and two pharmaceuticals (caffeine, metformin) with detection frequencies ranging 66-84% of all sites. Detected contaminant concentrations varied from less than 1 ng L-1 to greater than 10 µg L-1, with 77 and 278 having median detected concentrations greater than 100 ng L-1 and 10 ng L-1, respectively. Cumulative detections and concentrations ranged 4-161 compounds (median 70) and 8.5-102 847 ng L-1, respectively, and correlated significantly with wastewater discharge, watershed development, and toxic release inventory metrics. Log10 concentrations of widely monitored HHCB, triclosan, and carbamazepine explained 71-82% of the variability in the total number of compounds detected (linear regression; p-values: < 0.001-0.012), providing a statistical inference tool for unmonitored contaminants. Due to multiple modes of action, high bioactivity, biorecalcitrance, and direct environment application (pesticides), designed-bioactive organics (median 41 per site at µg L-1 cumulative concentrations) in developed watersheds present aquatic health concerns, given their acknowledged potential for sublethal effects to sensitive species and lifecycle stages at low ng L-1.


Asunto(s)
Ríos/química , Contaminantes Químicos del Agua , Cloropirifos/toxicidad , Monitoreo del Ambiente , Plaguicidas , Aguas Residuales/química
18.
Environ Res ; 158: 212-224, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28654877

RESUMEN

The highly pathogenic avian influenza (H5N2) outbreak in the Midwestern United States (US) in 2015 was historic due to the number of birds and poultry operations impacted and the corresponding economic loss to the poultry industry and was the largest animal health emergency in US history. The U.S. Geological Survey (USGS), with the assistance of several state and federal agencies, aided the response to the outbreak by developing a study to determine the extent of virus transport in the environment. The study goals were to: develop the appropriate sampling methods and protocols for measuring avian influenza virus (AIV) in groundwater, provide the first baseline data on AIV and outbreak- and poultry-related contaminant occurrence and movement into groundwater, and document climatological factors that may have affected both survival and transport of AIV to groundwater during the months of the 2015 outbreak. While site selection was expedient, there were often delays in sample response times due to both relationship building between agencies, groups, and producers and logistical time constraints. This study's design and sampling process highlights the unpredictable nature of disease outbreaks and the corresponding difficulty in environmental sampling of such events. The lessons learned, including field protocols and approaches, can be used to improve future research on AIV in the environment.


Asunto(s)
Pollos , Brotes de Enfermedades , Monitoreo del Ambiente/métodos , Agua Subterránea/análisis , Subtipo H5N2 del Virus de la Influenza A/fisiología , Gripe Aviar/epidemiología , Enfermedades de las Aves de Corral/epidemiología , Pavos , Contaminantes Químicos del Agua/análisis , Crianza de Animales Domésticos , Animales , Desinfectantes , Disruptores Endocrinos , Gripe Aviar/virología , Iowa/epidemiología , Proyectos Piloto , Enfermedades de las Aves de Corral/virología
19.
Environ Sci Technol ; 50(11): 5991-9, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27129041

RESUMEN

Endogenous progestogens and pharmaceutical progestins enter the environment through wastewater treatment plant effluent and agricultural field runoff. Lab studies demonstrate strong, negative exposure effects of these chemicals on aquatic vertebrate reproduction. Behavior can be a sensitive, early indicator of exposure to environmental contaminants associated with altered reproduction yet is rarely examined in ecotoxicology studies. Gestodene is a human contraceptive progestin and a potent activator of fish androgen receptors. Our objective was to test the effects of gestodene on reproductive behavior and associated egg deposition in the fathead minnow. After only 1 day, males exposed to ng/L of gestodene were more aggressive and less interested in courtship and mating, and exposed females displayed less female courtship behavior. Interestingly, 25% of the gestodene tanks contained a female that drove the male out of the breeding tile and displayed male-typical courtship behaviors toward the other female. Gestodene decreased or arrested egg deposition with no observed gonadal histopathology. Together, these results suggest that effects on egg deposition are primarily due to altered reproductive behavior. The mechanisms by which gestodene disrupts behavior are unknown. Nonetheless, the rapid and profound alterations of the reproductive biology of gestodene-exposed fish suggest that wild populations could be similarly affected.


Asunto(s)
Cyprinidae , Progestinas/farmacología , Animales , Anticonceptivos , Femenino , Masculino , Reproducción/efectos de los fármacos , Conducta Sexual Animal , Contaminantes Químicos del Agua/farmacología
20.
Environ Sci Technol ; 50(24): 13206-13214, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27993073

RESUMEN

Triclocarban (TCC) and triclosan (TCS), two of the most commonly used antimicrobial compounds, can be introduced into ecosystems by applying wastewater treatment plant biosolids to agricultural fields. Concentrations of TCC and TCS were measured in different trophic levels within a terrestrial food web encompassing land-applied biosolids, soil, earthworms (Lumbricus), deer mice (Peromyscus maniculatus), and eggs of European starlings (Sturnus vulgaris) and American kestrels (Falco sparverius) at an experimental site amended with biosolids for the previous 7 years. The samples from this site were compared to the same types of samples from a reference (biosolids-free) agricultural site. Inter-site comparisons showed that concentrations of both antimicrobials were higher on the experimental site in the soil, earthworms, mice (livers), and European starling eggs, but not American kestrel eggs, compared to the control site. Inter-species comparisons on the experimental site indicated significantly higher TCC concentrations in mice (TCC: 12.6-33.3 ng/g) and in starling eggs (TCC: 15.4-31.4 ng/g) than in kestrel eggs (TCC: 3.6 ng/g). Nesting success of kestrels only was significantly lower on the experimental site compared to the reference site due to nest abandonment. This study demonstrates that biosolids-derived TCC and TCS are present throughout the terrestrial food web, including secondary (e.g., starlings) and tertiary (i.e., kestrels) consumers, after repeated, long-term biosolids application.


Asunto(s)
Contaminantes del Suelo , Triclosán , Animales , Carbanilidas , Ecosistema , Ratones , Oligoquetos , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA