Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Langmuir ; 40(43): 22982-22989, 2024 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-39413768

RESUMEN

We studied the optical and structural properties of highly ordered arrays of surfactant-capped ZnS nanowires (NWs) and nanorods (NRs) in organic suspensions. The photoluminescence (PL) emission measured under different concentrations and postsynthesis washing cycles interestingly showed increasing emission upon decreasing nanoparticle (NP) concentration. Synchrotron small angle X-ray scattering measurements elucidated the liquid-crystal-like structure of the NPs in suspension under different concentrations and temperatures. The NWs are stacked in a simple structure with a hexagonal cross-section, whereas the structure of the NRs is more complex, resembling a smectic-c liquid crystal, and shows unusual thermal expansion versus temperature. The results point out that a certain amount of bound surfactant must be present on the NP surface to maximize the PL intensity.

2.
J Am Chem Soc ; 144(39): 17889-17896, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36126329

RESUMEN

High-resolution structures are crucial for understanding the functional properties of nanomaterials. We applied single-particle cryo-electron microscopy (cryo-EM), a method traditionally used for structure determination of biological macromolecules, to obtain high-resolution structures of synthetic non-biological filaments formed by photopolymerization of macrocyclic diacetylene (MDA) amphiphilic monomers. Tomographic analysis showed that the MDA monomers self-assemble into hollow nanotubes upon dispersion in water. Single-particle analysis revealed tubes consisting of six pairs of covalently bonded filaments held together by hydrophobic interactions, where each filament is composed of macrocyclic rings stacked in parallel "chair" conformations. The hollow MDA nanotube structures we found may account for the efficient scavenging of amphiphilic pollutants in water and subsequent photodegradation of the guest species.


Asunto(s)
Contaminantes Ambientales , Nanotubos , Microscopía por Crioelectrón/métodos , Polímero Poliacetilénico , Agua
3.
J Biol Chem ; 295(49): 16614-16629, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-32967967

RESUMEN

Cation diffusion facilitator (CDF) proteins are a conserved family of divalent transition metal cation transporters. CDF proteins are usually composed of two domains: the transmembrane domain, in which the metal cations are transported through, and a regulatory cytoplasmic C-terminal domain (CTD). Each CDF protein transports either one specific metal or multiple metals from the cytoplasm, and it is not known whether the CTD takes an active regulatory role in metal recognition and discrimination during cation transport. Here, the model CDF protein MamM, an iron transporter from magnetotactic bacteria, was used to probe the role of the CTD in metal recognition and selectivity. Using a combination of biophysical and structural approaches, the binding of different metals to MamM CTD was characterized. Results reveal that different metals bind distinctively to MamM CTD in terms of their binding sites, thermodynamics, and binding-dependent conformations, both in crystal form and in solution, which suggests a varying level of functional discrimination between CDF domains. Furthermore, these results provide the first direct evidence that CDF CTDs play a role in metal selectivity. We demonstrate that MamM's CTD can discriminate against Mn2+, supporting its postulated role in preventing magnetite formation poisoning in magnetotactic bacteria via Mn2+ incorporation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Magnetospirillum/metabolismo , Manganeso/metabolismo , Metales/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Calorimetría , Proteínas de Transporte de Catión/química , Cationes/química , Cristalografía por Rayos X , Dimerización , Manganeso/química , Metales/química , Simulación de Dinámica Molecular , Dominios Proteicos , Estructura Cuaternaria de Proteína , Espectrometría de Fluorescencia , Termodinámica
4.
Biophys J ; 118(6): 1270-1278, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32053776

RESUMEN

Membrane interactions of amyloidogenic proteins constitute central determinants both in protein aggregation as well as in amyloid cytotoxicity. Most reported studies of amyloid peptide-membrane interactions have employed model membrane systems combined with application of spectroscopy methods or microscopy analysis of individual binding events. Here, we applied for the first time, to our knowledge, imaging flow cytometry for investigating interactions of representative amyloidogenic peptides, namely, the 106-126 fragment of prion protein (PrP(106-126)) and the human islet amyloid polypeptide (hIAPP), with giant lipid vesicles. Imaging flow cytometry was also applied to examine the inhibition of PrP(106-126)-membrane interactions by epigallocatechin gallate, a known modulator of amyloid peptide aggregation. We show that imaging flow cytometry provided comprehensive population-based statistical information upon morphology changes of the vesicles induced by PrP(106-126) and hIAPP. Specifically, the experiments reveal that both PrP(106-126) and hIAPP induced dramatic transformations of the vesicles, specifically disruption of the spherical shapes, reduction of vesicle circularity, lobe formation, and modulation of vesicle compactness. Interesting differences, however, were apparent between the impact of the two peptides upon the model membranes. The morphology analysis also showed that epigallocatechin gallate ameliorated vesicle disruption by PrP(106-126). Overall, this study demonstrates that imaging flow cytometry provides powerful means for disclosing population-based morphological membrane transformations induced by amyloidogenic peptides and their inhibition by aggregation modulators.


Asunto(s)
Polipéptido Amiloide de los Islotes Pancreáticos , Priones , Amiloide , Proteínas Amiloidogénicas , Citometría de Flujo , Humanos
5.
Angew Chem Int Ed Engl ; 58(44): 15869-15875, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31478321

RESUMEN

Supramolecular gels often become destabilized by the transition of the gelator into a more stable crystalline phase, but often the long timescale and sporadic localization of the crystalline phase preclude a persistent observation of this process. We present a pentapeptide gel-crystal phase transition amenable for continuous visualization and quantification by common microscopic methods, allowing the extraction of kinetics and visualization of the dynamics of the transition. Using optical microscopy and microrheology, we show that the transition is a sporadic event in which gel dissolution is associated with microcrystalline growth that follows a sigmoidal rate profile. The two phases are based on ß-sheets of similar yet distinct configuration. We also demonstrate that the transition kinetics and crystal morphology can be modulated by extrinsic factors, including temperature, solvent composition, and mechanical perturbation. This work introduces an accessible model system and methodology for studying phase transitions in supramolecular gels.


Asunto(s)
Oligopéptidos/química , Cristalización , Geles/química , Cinética , Tamaño de la Partícula , Transición de Fase , Propiedades de Superficie , Temperatura , Factores de Tiempo
6.
Angew Chem Int Ed Engl ; 57(38): 12444-12447, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30088843

RESUMEN

The formation of apoptosis-inducing amyloidal structures by metabolites has significantly extended the "amyloid hypothesis" to include non-proteinaceous, single metabolite building blocks. However, detection of metabolite assemblies is restricted compared to their larger protein-based counterparts owing to the hindrance of external labelling and limited immunohistochemical detection tools. Herein, we present the detection of the formation, dynamics, and cellular distribution of metabolite amyloid-like structures and provide mechanistic insights into the generation of supramolecular chromophores. Moreover, the intrinsic fluorescence properties allow the detection of metabolite assemblies in living cells without the use of external dyes. Altogether, this intrinsic fluorescence of metabolite assemblies further verifies their amyloidal nature, while providing an important tool for further investigation of their pathological role in inborn error of metabolism disorders.


Asunto(s)
Amiloide/química , Amiloide/metabolismo , Línea Celular Tumoral , Fluorescencia , Células HEK293 , Humanos , Microscopía Confocal
7.
Biochim Biophys Acta ; 1858(9): 2208-2214, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27365272

RESUMEN

Bacosides, class of compounds extracted from the Bacopa monniera plant, exhibit interesting therapeutic properties, particularly enhancing cognitive functions and putative anti-amyloid activity. We show that bacoside-A exerted significant effects upon fibrillation and membrane interactions of the amyloidogenic fragment of the prion protein [PrP(106-126)]. Specifically, when co-incubated with PrP(106-126), bacoside-A accelerated fibril formation in the presence of lipid bilayers and in parallel inhibited bilayer interactions of the peptide aggregates formed in solution. These interesting phenomena were studied by spectroscopic and microscopic techniques, which suggest that bacoside A-promoted fibrillation reduced the concentration of membrane-active pre-fibrillar species of the prion fragment. This study suggests that induction of fibril formation and corresponding inhibition of membrane interactions are likely the underlying factors for ameliorating amyloid protein toxicity by bacoside-A.


Asunto(s)
Amiloide/química , Membranas Artificiales , Proteínas Priónicas/química , Saponinas/química , Triterpenos/química , Amiloide/antagonistas & inhibidores , Proteínas Priónicas/antagonistas & inhibidores
8.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(9): 853-868, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28504210

RESUMEN

The oleaginous microalga Lobosphaera incisa (Trebouxiophyceae, Chlorophyta) contains arachidonic acid (ARA, 20:4 n-6) in all membrane glycerolipids and in the storage lipid triacylglycerol. The optimal growth temperature of the wild-type (WT) strain is 25°C; chilling temperatures (≤15°C) slow its growth. This effect is more pronounced in the delta-5-desaturase ARA-deficient mutant P127, in which ARA is replaced with dihomo-γ-linolenic acid (DGLA, 20:3 n-6). In nutrient-replete cells grown at 25°C, the major chloroplast lipid monogalactosylglycerol (MGDG) was dominated by C18/C16 species in both strains. Yet ARA constituted over 10% of the total fatty acids in the WT MGDG as a component of C20/C18 and C20/C20 species, whereas DGLA was only a minor component of MGDG in P127. Both strains increased the percentage of 18:3 n-3 in membrane lipids under chilling temperatures. The temperature downshift led to a dramatic increase in triacylglycerol at the expense of chloroplast lipids. WT and P127 showed a similarly high photochemical quantum yield of photosystem II, whereas non-photochemical quenching (NPQ) and violaxanthin de-epoxidation were drastically higher in P127, especially at 15°C. Fluorescence anisotropy measurements indicated that ARA-containing MGDG might contribute to sustaining chloroplast membrane fluidity upon dropping to the chilling temperature. We hypothesize that conformational changes in chloroplast membranes and increased rigidity of the ARA-deficient MGDG of P127 at chilling temperatures are not compensated by trienoic fatty acids. This might 'lock' violaxanthin de-epoxidase in the activated state causing high constitutive NPQ and alleviate the risk of photodamage under chilling conditions in the mutant.


Asunto(s)
Ácido Araquidónico/metabolismo , Microalgas/metabolismo , Microalgas/fisiología , Estrés Fisiológico/fisiología , Cloroplastos/metabolismo , Cloroplastos/fisiología , Frío , delta-5 Desaturasa de Ácido Graso , Ácido Graso Desaturasas/metabolismo , Luz , Lípidos/fisiología , Fluidez de la Membrana/fisiología , Complejo de Proteína del Fotosistema II/fisiología , Triglicéridos/metabolismo , Xantófilas/metabolismo
9.
Biophys J ; 110(9): 2016-25, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27166809

RESUMEN

Elucidating the dynamic properties of membranes is important for understanding fundamental cellular processes and for shedding light on the interactions of proteins, drugs, and viruses with the cell surface. Dynamic studies of lipid bilayers have been constrained, however, by the relatively small number of pertinent molecular probes and the limited physicochemical properties of the probes. We show that a lipid conjugate comprised of a fluorescent carbon dot (C-dot) covalently attached to a phospholipid constitutes a versatile and effective vehicle for studying bilayer dynamics. The C-dot-modified phospholipids readily incorporated within biomimetic membranes, including solid-supported bilayers and small and giant vesicles, and inserted into actual cellular membranes. We employed the C-dot-phospholipid probe to elucidate the effects of polymyxin-B (a cytolytic peptide), valproic acid (a lipophilic drug), and amyloid-ß (a peptide associated with Alzheimer's disease) upon bilayer fluidity and lipid dynamics through the application of various biophysical techniques.


Asunto(s)
Carbono/química , Colorantes Fluorescentes/química , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Nanopartículas/química , Fosfolípidos/química , Membrana Celular/química , Membrana Celular/metabolismo , Espectrometría de Fluorescencia
10.
J Struct Biol ; 194(3): 244-52, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26970040

RESUMEN

Magnetotactic bacteria are Gram-negative bacteria that navigate along geomagnetic fields using the magnetosome, an organelle that consists of a membrane-enveloped magnetic nanoparticle. Magnetite formation and its properties are controlled by a specific set of proteins. MamC is a small magnetosome-membrane protein that is known to be active in iron biomineralization but its mechanism has yet to be clarified. Here, we studied the relationship between the MamC magnetite-interaction loop (MIL) structure and its magnetite interaction using an inert biomineralization protein-MamC chimera. Our determined structure shows an alpha-helical fold for MamC-MIL with highly charged surfaces. Additionally, the MamC-MIL induces the formation of larger magnetite crystals compared to protein-free and inert biomineralization protein control experiments. We suggest that the connection between the MamC-MIL structure and the protein's charged surfaces is crucial for magnetite binding and thus for the size control of the magnetite nanoparticles.


Asunto(s)
Proteínas Bacterianas/química , Óxido Ferrosoférrico , Bacterias Gramnegativas/química , Magnetosomas/química , Proteínas Bacterianas/metabolismo , Óxido Ferrosoférrico/metabolismo , Bacterias Gramnegativas/metabolismo , Magnetosomas/fisiología , Magnetospirillum , Nanopartículas/química , Unión Proteica , Relación Estructura-Actividad
11.
Chemistry ; 21(21): 7755-9, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25800814

RESUMEN

Graphene quantum dots (GQDs) have attracted considerable interest due to their unique physicochemical properties and various applications. For the first time it is shown that GQDs surface-functionalized with hydrocarbon chains (i.e., amphiphilic GQDs) self-assemble into unilamellar spherical vesicles in aqueous solution. The amphiphilic GQD vesicles exhibit multicolor luminescence that can be readily exploited for membrane studies by fluorescence spectroscopy and microscopy. The GQD vesicles were used for microscopic analysis of membrane interactions and disruption by the peptide beta-amyloid.

12.
Bioorg Med Chem ; 22(12): 3123-40, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24794745

RESUMEN

The development of selective agents capable of discriminating between protein kinase C (PKC) isoforms and other diacylglycerol (DAG)-responsive C1 domain-containing proteins represents an important challenge. Recent studies have highlighted the role that Ras guanine nucleotide-releasing protein (RasGRP) isoforms play both in immune responses as well as in the development of prostate cancer and melanoma, suggesting that the discovery of selective ligands could have potential therapeutic value. Thus far, the N-methyl-substituted indololactone 1 is the agonist with the highest reported potency and selectivity for RasGRP relative to PKC. Here we present the synthesis, binding studies, cellular assays and biophysical analysis of interactions with model membranes of a family of regioisomers of 1 (compounds 2-5) that differ in the position of the linkage between the indole ring and the lactone moiety. These structural variations were studied to explore the interaction of the active complex (C1 domain-ligand) with cellular membranes, which is believed to be an important factor for selectivity in the activation of DAG-responsive C1 domain containing signaling proteins. All compounds were potent and selective activators of RasGRP when compared to PKCα with selectivities ranging from 6 to 65 fold. However, the parent compound 1 was appreciably more selective than any of the other isomers. In intact cells, modest differences in the patterns of translocation of the C1 domain targets were observed. Biophysical studies using giant vesicles as model membranes did show substantial differences in terms of molecular interactions impacting lipid organization, dynamics and membrane insertion. However, these differences did not yield correspondingly large changes in patterns of biological response, at least for the parameters examined.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Diglicéridos/farmacología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Indoles/farmacología , Lactonas/farmacología , Neoplasias de la Próstata/patología , Proteína Quinasa C/metabolismo , Animales , Células CHO , Membrana Celular/metabolismo , Células Cultivadas , Cricetulus , Diglicéridos/química , Polarización de Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Indoles/química , Lactonas/química , Masculino , Modelos Moleculares , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Isoformas de Proteínas
13.
Nanomaterials (Basel) ; 14(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39057911

RESUMEN

Colloidal semiconductor nanoparticles (NPs) represent an emergent state of matter with unique properties, bridging bulk materials and molecular structures. Their distinct physical attributes, such as bandgap and photoluminescence, are intricately tied to their size and morphology. Ligand passivation plays a crucial role in shaping NPs and determining their physical properties. Ligand exchange (LE) offers a versatile approach to tailoring NP properties, often guided by Pearson's Hard-Soft Acid-Base theory. Lead sulfide (PbS), a semiconductor of considerable interest, exhibits size-dependent tunable bandgaps from the infrared to the visible range. Here, we present two methods for synthesizing water-soluble, polyvinylpyrrolidone (PVP)-coated PbS NPs. The first involves direct synthesis in an aqueous solution while utilizing PVP as the surfactant for the formation of nano-cubes with a crystal coherence length of ~30 nm, while the second involves LE from octadecylamine-coated PbS truncated nano-cubes to PVP-coated PbS NPs with a crystal coherence length of ~15 nm. Multiple characterization techniques, including X-ray diffraction, transmission electron microscopy, Fourier-transform infrared spectroscopy, and thermal gravimetric analysis, confirmed the results of the synthesis and allowed us to monitor the ligand exchange process. Our findings demonstrate efficient and environmentally friendly approaches for synthesizing PVP-coated PbS NPs.

14.
Heliyon ; 10(4): e25417, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420388

RESUMEN

Carbon dots (CDs) are promising photothermal nanoparticles that can be utilized in environmental treatments. They exhibit favorable physicochemical properties, including low toxicity, physical and chemical stability, photo-dependant reversible behaviour, and environmentally friendly synthesis using benign building blocks. Here, we synthesized innovative CDs/polylactic acid (PLA) electrospun composite membranes for evaluating the removal of hydrophobic compounds like long-chain hydrocarbons or oils in biphasic mixtures with water. The ultimate goal was to develop innovative and sustainable solar-heated oil absorbents. Specifically, we fabricated PLA membranes with varying CD contents, characterized their morphology, thermal, and mechanical properties, and assessed the environmental impact of membrane production according to ISO 14040 and 14044 standards in a preliminary "cradle-to-gate" life cycle assessment study. Solar radiation experiments demonstrated that the CDs/PLA composites exhibited greater uptake of hydrophobic compounds compared to pure PLA membranes, ascribable to the CDs-induced photothermal effect. The adsorption and regeneration capacity of the new CDs/PLA membrane was demonstrated through multiple uptake/release cycles. Ecotoxicity analyses confirmed the safety profile of the new adsorbent system towards freshwater microalgae, further emphasizing its potential as an environmentally friendly solution for the removal of hydrophobic compounds in water treatment processes.

15.
Biochim Biophys Acta ; 1818(12): 2967-74, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22877704

RESUMEN

Ionic liquids (ILs) are a class of diverse organic salts with relatively low melting points (below 100°C) which have attracted considerable interest as a promising "green" substitute for organic solvents. The broad solvation properties of ILs and their high solubility in water, however, present health risks, in particular since it was shown that many ILs exhibit cytotoxic properties. In this context, interactions of ILs with the cellular membrane are believed to constitute a primary culprit for toxicity. We present a comprehensive biophysical and microscopy study of membrane interactions of a series of ILs having different side-chain compositions and lengths, and cationic head-group structures and orientations. The experimental data reveal that the ILs studied exhibit distinct mechanisms of membrane binding, insertion, and disruption which could be correlated with their biological activities. The results indicate, in particular, that both the side chain composition and particularly the head-groups of ILs constitute determinants for membrane activity and consequent cell toxicity. This work suggests that tuning membrane interactions of ILs should be an important factor for designing future compounds with benign environmental impact.


Asunto(s)
Membrana Celular/metabolismo , Líquidos Iónicos/química , Líquidos Iónicos/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Humanos , Solventes/química
16.
J Am Chem Soc ; 135(36): 13582-9, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-23952054

RESUMEN

Amyloid plaques comprising misfolded proteins are the hallmark of several incurable diseases, including Alzheimer's disease, type-II diabetes, Jacob-Creutzfeld disease, and others. While the exact molecular mechanisms underlying protein misfolding diseases are still unknown, several theories account for amyloid fiber formation and their toxic significance. Prominent among those is the "prion hypothesis" stipulating that misfolded protein seeds act as "infectious agents" propagating aggregation of nominally healthy, native proteins. Recent studies, in fact, have reported that interactions between different amyloid peptides that are partly sequence-related might also affect fibrillation pathways and pathogenicity. Here, we present evidence that two structurally and physiologically unrelated amyloidogenic peptides, the islet amyloid polypeptide (IAPP, the peptide comprising the amyloid aggregates in type II diabetes) and an amyloidogenic determinant of the prion protein (PrP), give rise to a significantly distinct fibrillation pathway when they are incubated together in the presence of membrane bilayers. In particular, the experimental data demonstrate that the lipid bilayer environment is instrumental in initiating and promoting the assembly of morphologically distinct fibrillar species. Moreover, cross-fibrillation produced peptide species exhibiting significantly altered membrane interaction profiles, as compared to the scenario where the two peptides aggregated separately. Overall, our data demonstrate that membranes constitute a critical surface-active medium for promoting interactions between disparate amyloidogenic peptides, modulating both fibrillation pathways as well as the biophysical properties of the peptide aggregates. This work hints that membrane-induced cross-fibrillation of unrelated amyloidogenic peptides might play an insidious role in the molecular pathologies of protein misfolding diseases.


Asunto(s)
Proteínas Amiloidogénicas/química , Membrana Dobles de Lípidos/química , Tamaño de la Partícula , Propiedades de Superficie , Factores de Tiempo
17.
J Colloid Interface Sci ; 652(Pt B): 1897-1907, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37690297

RESUMEN

Self-assembly of macroscopic membranes at the interface between self-assembling peptides and aqueous polymer solutions of opposite charge has been explored mostly due to the membranes' unique hierarchical structure of three distinct regions, including a layer of perpendicular fibers. We report here on the formation and characterization of self-assembled membranes made with λ-carrageenan and the cationic ß-sheet peptides, Pro-Lys-(Phe-Lys)5-Pro (PFK). Using SAXS, SEM, ITC, and rheology, we compared these membranes' morphology and physical properties to membranes made with alginate. We recognized that the polysaccharide's single chain conformation, its solution's viscosity, the potential of hydrogen bonding and electrostatic interactions between the polysaccharides and the peptides charged groups, and the strength of these interactions all affect the properties of the resulting membranes. As a result, we identified that an interplay between the polymer-peptide strength of interactions and the stiffness of the polysaccharide's single chain could be used as a route to control the structure-function relationship of the membranes. These results provide valuable information for creating guidelines to design self-assembly membranes with specific properties.

18.
Nanoscale ; 15(19): 8881-8887, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37129198

RESUMEN

While the new cubic phase of tin monosulfide, π-SnS, shows potential for various applications, not much work was focused on the phase transitions, thermal stability, and thermal properties of π-SnS. In this work, we addressed these issues using temperature-resolved in situ X-ray diffraction combined with thermo-gravimetric differential scanning calorimetry and thermo-gravimetric infrared spectroscopy. The cubic π-SnS phase nanoparticles capped with polyvinylpyrrolidone were proven stable for 12 hours at 400 °C, pointing out the possible utilization of this new cubic phase at elevated temperatures. At the same time, heating above this temperature resulted in a phase transition to the high-temperature orthorhombic ß-SnS phase. Subsequent cooling to room temperature led to an additional phase transition to the stable orthorhombic α-SnS phase. Interestingly, heating-induced phase transformation of π-SnS nanoparticles always resulted in ß-SnS, even at temperatures below the α- to ß-SnS equilibrium transition temperature. It was shown that surfactant decomposition and evaporation triggers the phase transition. Several thermal parameters were calculated, including the phase transition activation energy and the thermal expansion of the unit cell parameter of π-SnS.

19.
Sci Total Environ ; 872: 162176, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36775163

RESUMEN

Hydrothermal carbonization (HTC) is an emerging technology that may potentially address sanitation problems and energy scarcity. However, the significance of the parameters that govern HTC (e.g., temperature and time) is not fully understood, in particular for human excreta. A simplified coalification model was used to describe the 'strength' of thermal reactions by combining temperature and time into a single parameter, the severity factor. This study is the first to assess the extent to which a severity coalification model can predict the properties of human-excreta-derived hydrochar for a given severity with different combinations of reaction time and temperature. HTC experiments with raw human excreta were undertaken with 50 mL batch reactors at five different severities. Severity was established with different combinations of temperature (180 °C, 210 °C, and 240 °C) and reaction time based on the severity-factor equation. The resulting hydrochars were tested for combustion properties, and the respective gas emission as well as, physicochemical and surface area parameters. Significant correlations were found between severity and yield (R2 = 0.88), carbon content (R2 = 0.85), and calorific value (R2 = 0.90), with the properties being similar for a given severity but varying with different severities. Hydrochar's contact angle increased from 53.1° to 81.3° with increasing SF, while surface area remained low, ranging from <1 to 5.1 m2g-1, with no definite correlation to SF. Combustion profiles for a given severity were generally similar, but the ignition, peak, and burnout temperatures differed between severities. Gram-Schmidt curves indicated that gas emission profiles are similar for a given severity but vary with different severities. The main gases emitted in combustion were virtually identical in all treatments, and included CO2, alkenes (C9, C10), CH4, and H2O. It is concluded that many properties of hydrochar can be inferred from the severity factor.

20.
Nanoscale Adv ; 5(5): 1356-1367, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36866263

RESUMEN

Reactive aldehydes generated in cells and tissues are associated with adverse physiological effects. Dihydroxyphenylacetaldehyde (DOPAL), the biogenic aldehyde enzymatically produced from dopamine, is cytotoxic, generates reactive oxygen species, and triggers aggregation of proteins such as α-synuclein implicated in Parkinson's disease. Here, we demonstrate that carbon dots (C-dots) prepared from lysine as the carbonaceous precursor bind DOPAL molecules through interactions between the aldehyde units and amine residues on the C-dot surface. A set of biophysical and in vitro experiments attests to attenuation of the adverse biological activity of DOPAL. In particular, we show that the lysine-C-dots inhibit DOPAL-induced α-synuclein oligomerization and cytotoxicity. This work underlines the potential of lysine-C-dots as an effective therapeutic vehicle for aldehyde scavenging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA