Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Respir Cell Mol Biol ; 49(4): 619-26, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23713977

RESUMEN

The release of hemoglobin (Hb) with hemolysis causes vascular dysfunction. New evidence implicates Hb-induced NF-κB and hypoxia inducible factor (HIF) activation, which may be under the control of a Toll-like receptor (TLR)-signaling pathway. Nearly all TLR-signaling pathways activate the myeloid differentiation primary response gene-88 (MyD88) that regulates NF-κB. We hypothesized that the differing transition states of Hb influence endothelial cell permeability via NF-κB activation and HIF regulation through a MyD88-dependent pathway. In cultured human dermal microvascular endothelial cells (HMECs-1), we examined the effects of Hb in the ferrous (HbFe(2+)), ferric (HbFe(3+)), and ferryl (HbFe(4+)) transition states on NF-κB and HIF activity, HIF-1α and HIF-2α mRNA up-regulation, and monolayer permeability, in the presence or absence of TLR4, MyD88, NF-κB, or HIF inhibition, as well as superoxide dismutase (SOD) and catalase. Our data showed that cell-free Hb, in each transition state, induced NF-κB and HIF activity, up-regulated HIF-1α and HIF-2α mRNA, and increased HMEC-1 permeability. The blockade of either MyD88 or NF-κB, but not TLR4, attenuated Hb-induced HIF activity, the up-regulation HIF-1 and HIF-2α mRNA, and HMEC-1 permeability. The inhibition of HIF activity exerted less of an effect on Hb-induced monolayer permeability. Moreover, SOD and catalase attenuated NF-κB, HIF activity, and monolayer permeability. Our results demonstrate that Hb-induced NF-κB and HIF are regulated by two mechanisms, either MyD88 activation or Hb transition state-induced ROS formation, that influence HMEC-1 permeability.


Asunto(s)
Células Endoteliales/metabolismo , Hemoglobinas/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Catalasa/genética , Catalasa/metabolismo , Línea Celular , Permeabilidad de la Membrana Celular , Hemoglobinas/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factor 88 de Diferenciación Mieloide/antagonistas & inhibidores , FN-kappa B/genética , FN-kappa B/metabolismo , Oxidación-Reducción , Permeabilidad , ARN Mensajero/genética , Transducción de Señal , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Regulación hacia Arriba
2.
PLoS One ; 8(8): e71493, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23977055

RESUMEN

Disruption of peripheral circadian rhyme pathways dominantly leads to metabolic disorders. Studies on circadian rhythm proteins in the heart indicated a role for Clock or Per2 in cardiac metabolism. In contrast to Clock(-/-), Per2(-/-) mice have larger infarct sizes with deficient lactate production during myocardial ischemia. To test the hypothesis that cardiac Per2 represents an important regulator of cardiac metabolism during myocardial ischemia, we measured lactate during reperfusion in Per1(-/-), Per2(-/-) or wildtype mice. As lactate measurements in whole blood indicated an exclusive role of Per2 in controlling lactate production during myocardial ischemia, we next performed gene array studies using various ischemia-reperfusion protocols comparing wildtype and Per2(-/-) mice. Surprisingly, high-throughput gene array analysis revealed dominantly lipid metabolism as the differentially regulated pathway in wildtype mice when compared to Per2(-/-). In all ischemia-reperfusion protocols used, the enzyme enoyl-CoA hydratase, which is essential in fatty acid beta-oxidation, was regulated in wildtype animals only. Studies using nuclear magnet resonance imaging (NMRI) confirmed altered fatty acid populations with higher mono-unsaturated fatty acid levels in hearts from Per2(-/-) mice. Unexpectedly, studies on gene regulation during reperfusion revealed solely pro inflammatory genes as differentially regulated 'Per2-genes'. Subsequent studies on inflammatory markers showed increasing IL-6 or TNFα levels during reperfusion in Per2(-/-) mice. In summary, these studies reveal an important role of cardiac Per2 for fatty acid metabolism and inflammation during myocardial ischemia and reperfusion, respectively.


Asunto(s)
Ácidos Grasos/metabolismo , Inflamación/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Proteínas Circadianas Period/metabolismo , Animales , Citocinas/metabolismo , Perfilación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Inflamación/sangre , Inflamación/complicaciones , Inflamación/genética , Lactatos/sangre , Ratones , Daño por Reperfusión Miocárdica/sangre , Daño por Reperfusión Miocárdica/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Circadianas Period/deficiencia , Fenotipo , Análisis de Componente Principal , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA