Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 68(4): 698-714.e5, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29149597

RESUMEN

Telomere elongation through telomerase enables chromosome survival during cellular proliferation. The conserved multifunctional shelterin complex associates with telomeres to coordinate multiple telomere activities, including telomere elongation by telomerase. Similar to the human shelterin, fission yeast shelterin is composed of telomeric sequence-specific double- and single-stranded DNA-binding proteins, Taz1 and Pot1, respectively, bridged by Rap1, Poz1, and Tpz1. Here, we report the crystal structure of the fission yeast Tpz1475-508-Poz1-Rap1467-496 complex that provides the structural basis for shelterin bridge assembly. Biochemical analyses reveal that shelterin bridge assembly is a hierarchical process in which Tpz1 binding to Poz1 elicits structural changes in Poz1, allosterically promoting Rap1 binding to Poz1. Perturbation of the cooperative Tpz1-Poz1-Rap1 assembly through mutation of the "conformational trigger" in Poz1 leads to unregulated telomere lengthening. Furthermore, we find that the human shelterin counterparts TPP1-TIN2-TRF2 also assemble hierarchically, indicating cooperativity as a conserved driving force for shelterin assembly.


Asunto(s)
Proteínas Portadoras/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/química , Proteínas de Unión a Telómeros/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Proteínas de Unión al ADN , Humanos , Estructura Cuaternaria de Proteína , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Complejo Shelterina , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
2.
Trends Biochem Sci ; 45(10): 906-918, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32487353

RESUMEN

Methodological improvements in both single particle cryo-electron microscopy (cryo-EM) and hydrogen/deuterium exchange mass spectrometry (HDX-MS) mean that the two methods are being more frequently used together to tackle complex problems in structural biology. There are many benefits to this combination, including for the analysis of low-resolution density, for structural validation, in the analysis of individual proteins versus the same proteins in large complexes, studies of allostery, protein quality control during cryo-EM construct optimization, and in the study of protein movements/dynamics during function. As will be highlighted in this review, through careful considerations of potential sample and conformational heterogeneity, many joint studies have recently been demonstrated, and many future studies using this combination are anticipated.


Asunto(s)
Microscopía por Crioelectrón/métodos , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio/métodos , Proteínas/química
3.
Biochemistry ; 63(11): 1434-1444, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38780522

RESUMEN

The active form of the murine urokinase-type plasminogen activator (muPA) is formed by a 27-residue disordered light chain connecting the amino-terminal fragment (ATF) with the serine protease domain. The two chains are tethered by a disulfide bond between C1CT in the disordered light chain and C122CT in the protease domain. Previous work showed that the presence of the disordered light chain affected the inhibition of the protease domain by antibodies. Here we show that the disordered light chain induced a 3.7-fold increase in kcat of the protease domain of muPA. In addition, hydrogen-deuterium exchange mass spectrometry (HDX-MS) and accelerated molecular dynamics (AMD) were performed to identify the interactions between the disordered light chain and the protease domain. HDX-MS revealed that the light chain is contacting the 110s, the turn between the ß10- and ß11-strand, and the ß7-strand. A reduction in deuterium uptake was also observed in the activation loop, the 140s loop and the 220s loop, which forms the S1-specificty pocket where the substrate binds. These loops are further away from where the light chain seems to be interacting with the protease domain. Our results suggest that the light chain most likely increases the activity of muPA by allosterically favoring conformations in which the specificity pocket is formed. We propose a model by which the allostery would be transmitted through the ß-strands of the ß-barrels to the loops on the other side of the protease domain.


Asunto(s)
Activador de Plasminógeno de Tipo Uroquinasa , Animales , Ratones , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/química , Regulación Alostérica , Simulación de Dinámica Molecular , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Cinética
4.
J Biol Chem ; 299(10): 105179, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37607618

RESUMEN

Most serine proteases are synthesized as inactive zymogens that are activated by cleavage by another protease in a tightly regulated mechanism. The urokinase-type plasminogen activator (uPA) and plasmin cleave and activate each other, constituting a positive feedback loop. How this mutual activation cycle begins has remained a mystery. We used hydrogen deuterium exchange mass spectrometry to characterize the dynamic differences between the inactive single-chain uPA (scuPA) and its active form two-chain uPA (tcuPA). The results show that the C-terminal ß-barrel and the area around the new N terminus have significantly reduced dynamics in tcuPA as compared with scuPA. We also show that the zymogen scuPA is inactive but can, upon storage, become active in the absence of external proteases. In addition to plasmin, the tcuPA can activate scuPA by cleavage at K158, a process called autoactivation. Unexpectedly, tcuPA can cleave at position 158 even when this site is mutated. TcuPA can also cleave scuPA after K135 or K136 in the disordered linker, which generates the soluble protease domain of uPA. Plasmin cleaves scuPA exclusively after K158 and at a faster rate than tcuPA. We propose a mechanism by which the uPA receptor dimerization could promote autoactivation of scuPA on cell surfaces. These results resolve long-standing controversies in the literature surrounding the mechanism of uPA activation.

5.
Methods ; 213: 18-25, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36940840

RESUMEN

The transcription factor NF-ĸB is a central mediator of immune and inflammatory responses. To understand the regulation of NF-ĸB, it is important to probe the underlying thermodynamics, kinetics, and conformational dynamics of the NF-ĸB/IĸBα/DNA interaction network. The development of genetic incorporation of non-canonical amino acids (ncAA) has enabled the installation of biophysical probes into proteins with site specificity. Recent single-molecule FRET (smFRET) studies of NF-ĸB with site-specific labeling via ncAA incorporation revealed the conformational dynamics for kinetic control of DNA-binding mediated by IĸBα. Here we report the design and protocols for incorporating the ncAA p-azidophenylalanine (pAzF) into NF-ĸB and site-specific fluorophore labeling with copper-free click chemistry for smFRET. We also expanded the ncAA toolbox of NF-ĸB to include p-benzoylphenylalanine (pBpa) for UV crosslinking mass spectrometry (XL-MS) and incorporated both pAzF and pBpa into the full-length NF-ĸB RelA subunit which includes the intrinsically disordered transactivation domain.


Asunto(s)
Aminoácidos , FN-kappa B , Aminoácidos/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Fenilalanina
6.
Nucleic Acids Res ; 50(11): 6384-6397, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35670666

RESUMEN

In every domain of life, NusG-like proteins bind to the elongating RNA polymerase (RNAP) to support processive RNA synthesis and to couple transcription to ongoing cellular processes. Structures of factor-bound transcription elongation complexes (TECs) reveal similar contacts to RNAP, consistent with a shared mechanism of action. However, NusG homologs differ in their regulatory roles, modes of recruitment, and effects on RNA synthesis. Some of these differences could be due to conformational changes in RNAP and NusG-like proteins, which cannot be captured in static structures. Here, we employed hydrogen-deuterium exchange mass spectrometry to investigate changes in local and non-local structural dynamics of Escherichia coli NusG and its paralog RfaH, which have opposite effects on expression of xenogenes, upon binding to TEC. We found that NusG and RfaH regions that bind RNAP became solvent-protected in factor-bound TECs, whereas RNAP regions that interact with both factors showed opposite deuterium uptake changes when bound to NusG or RfaH. Additional changes far from the factor-binding site were observed only with RfaH. Our results provide insights into differences in structural dynamics exerted by NusG and RfaH during binding to TEC, which may explain their different functional outcomes and allosteric regulation of transcriptional pausing by RfaH.


Asunto(s)
Proteínas de Escherichia coli , Factores de Elongación de Péptidos , Transactivadores , Transcripción Genética , Sitios de Unión , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Factores de Elongación de Péptidos/metabolismo , ARN/metabolismo , Transactivadores/metabolismo , Factores de Elongación Transcripcional/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34088839

RESUMEN

To explore how pathogenic mutations of the multidomain leucine-rich repeat kinase 2 (LRRK2) hijack its finely tuned activation process and drive Parkinson's disease (PD), we used a multitiered approach. Most mutations mimic Rab-mediated activation by "unleashing" kinase activity, and many, like the kinase inhibitor MLi-2, trap LRRK2 onto microtubules. Here we mimic activation by simply deleting the inhibitory N-terminal domains and then characterize conformational changes induced by MLi-2 and PD mutations. After confirming that LRRK2RCKW retains full kinase activity, we used hydrogen-deuterium exchange mass spectrometry to capture breathing dynamics in the presence and absence of MLi-2. Solvent-accessible regions throughout the entire protein are reduced by MLi-2 binding. With molecular dynamics simulations, we created a dynamic portrait of LRRK2RCKW and demonstrate the consequences of kinase domain mutations. Although all domains contribute to regulating kinase activity, the kinase domain, driven by the DYGψ motif, is the allosteric hub that drives LRRK2 regulation.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Simulación de Dinámica Molecular , Secuencias de Aminoácidos , Humanos , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Dominios Proteicos , Transporte de Proteínas
8.
Biochemistry ; 62(6): 1145-1159, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36854124

RESUMEN

Human isocitrate dehydrogenase 1 (IDH1) is a highly conserved metabolic enzyme that catalyzes the interconversion of isocitrate and α-ketoglutarate. Kinetic and structural studies with IDH1 have revealed evidence of striking conformational changes that occur upon binding of its substrates, isocitrate and NADP+, and its catalytic metal cation. Here, we used hydrogen-deuterium exchange mass spectrometry (HDX-MS) to build a comprehensive map of the dynamic conformational changes experienced by IDH1 upon ligand binding. IDH1 proved well-suited for HDX-MS analysis, allowing us to capture profound changes in solvent accessibility at substrate binding sites and at a known regulatory region, as well as at more distant local subdomains that appear to support closure of this protein into its active conformation. HDX-MS analysis suggested that IDH1 is primarily purified with NADP(H) bound in the absence of its metal cation. Subsequent metal cation binding, even in the absence of isocitrate, was critical for driving large conformational changes. WT IDH1 folded into its fully closed conformation only when the full complement of substrates and metal was present. Finally, we show evidence supporting a previously hypothesized partially open conformation that forms prior to the catalytically active state, and we propose this conformation is driven by isocitrate binding in the absence of metal.


Asunto(s)
Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Isocitrato Deshidrogenasa , Humanos , Isocitrato Deshidrogenasa/química , Deuterio , Isocitratos/metabolismo , Medición de Intercambio de Deuterio , NADP/metabolismo , Ligandos
9.
J Biol Chem ; 298(9): 102349, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35934050

RESUMEN

Many transcription factors contain intrinsically disordered transcription activation domains (TADs), which mediate interactions with coactivators to activate transcription. Historically, DNA-binding domains and TADs have been considered as modular units, but recent studies have shown that TADs can influence DNA binding. Whether these results can be generalized to more TADs is not clear. Here, we biophysically characterized the NFκB p50/RelA heterodimer including the RelA TAD and investigated the TAD's influence on NFκB-DNA interactions. In solution, we show the RelA TAD is disordered but compact, with helical tendency in two regions that interact with coactivators. We determined that the presence of the TAD increased the stoichiometry of NFκB-DNA complexes containing promoter DNA sequences with tandem κB recognition motifs by promoting the binding of NFκB dimers in excess of the number of κB sites. In addition, we measured the binding affinity of p50/RelA for DNA containing tandem κB sites and single κB sites. While the presence of the TAD enhanced the binding affinity of p50/RelA for all κB sequences tested, it also increased the affinity for nonspecific DNA sequences by over 10-fold, leading to an overall decrease in specificity for κB DNA sequences. In contrast, previous studies have generally reported that TADs decrease DNA-binding affinity and increase sequence specificity. Our results reveal a novel function of the RelA TAD in promoting binding to nonconsensus DNA, which sheds light on previous observations of extensive nonconsensus DNA binding by NFκB in vivo in response to strong inflammatory signals.


Asunto(s)
Subunidad p50 de NF-kappa B , Factor de Transcripción ReIA , Activación Transcripcional , Secuencia de Bases , ADN/química , Subunidad p50 de NF-kappa B/química , Subunidad p50 de NF-kappa B/genética , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Factor de Transcripción ReIA/química , Factor de Transcripción ReIA/genética
10.
Biochem Soc Trans ; 51(6): 2085-2092, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38095058

RESUMEN

The nuclear factor-κB (NF-κB) transcription activation system involves disordered regions of both the NF-κB dimers and their inhibitors, the IκBs. The system is well-studied both at the cellular and biophysical levels affording a unique opportunity to compare and contrast the conclusions from both types of experiments. Through a combination of both experiments and theory, we have discovered that the RelA/p50 heterodimer and its inhibitor IκBα operate under kinetic control. Intrinsically disordered parts of both proteins are directly involved in temporal control and their folding and unfolding determines the rates of various processes. In this review, we show how the dynamic state of the intrinsically disordered sequences define the rates of intracellular processes.


Asunto(s)
Subunidad p50 de NF-kappa B , FN-kappa B , FN-kappa B/metabolismo , Subunidad p50 de NF-kappa B/genética , Subunidad p50 de NF-kappa B/metabolismo , Transducción de Señal , Activación Transcripcional
11.
Mol Cell Proteomics ; 20: 100019, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33268465

RESUMEN

Cullin RING E3 ligases (CRLs) ubiquitylate hundreds of important cellular substrates. Here we have assembled and purified the Ankyrin repeat and SOCS Box protein 9 CUL5 RBX2 ligase (ASB9-CRL) in vitro and show how it ubiquitylates one of its substrates, CKB. CRLs occasionally collaborate with RING between RING E3 ligases (RBRLs), and indeed, mass spectrometry analysis showed that CKB is specifically ubiquitylated by the ASB9-CRL-ARIH2-UBE2L3 complex. Addition of other E2s such as UBE2R1 or UBE2D2 contributes to polyubiquitylation but does not alter the sites of CKB ubiquitylation. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis revealed that CUL5 neddylation allosterically exposes its ARIH2 binding site, promoting high-affinity binding, and it also sequesters the NEDD8 E2 (UBE2F) binding site on RBX2. Once bound, ARIH2 helices near the Ariadne domain active site are exposed, presumably relieving its autoinhibition. These results allow us to propose a model of how neddylation activates ASB-CRLs to ubiquitylate their substrates.


Asunto(s)
Proteínas Cullin/metabolismo , Proteína NEDD8/metabolismo , Proteínas Cullin/química , Escherichia coli/genética , Proteína NEDD8/química , Proteínas Supresoras de la Señalización de Citocinas/química , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
12.
Nucleic Acids Res ; 49(19): 11211-11223, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34614173

RESUMEN

Binding and unbinding of transcription factors to DNA are kinetically controlled to regulate the transcriptional outcome. Control of the release of the transcription factor NF-κB from DNA is achieved through accelerated dissociation by the inhibitor protein IκBα. Using single-molecule FRET, we observed a continuum of conformations of NF-κB in free and DNA-bound states interconverting on the subseconds to minutes timescale, comparable to in vivo binding on the seconds timescale, suggesting that structural dynamics directly control binding kinetics. Much of the DNA-bound NF-κB is partially bound, allowing IκBα invasion to facilitate DNA dissociation. IκBα induces a locked conformation where the DNA-binding domains of NF-κB are too far apart to bind DNA, whereas a loss-of-function IκBα mutant retains the NF-κB conformational ensemble. Overall, our results suggest a novel mechanism with a continuum of binding modes for controlling association and dissociation of transcription factors.


Asunto(s)
ADN/genética , Interferones/genética , Inhibidor NF-kappaB alfa/genética , Factor de Transcripción ReIA/genética , Transcripción Genética , Animales , Avidina/química , Sitios de Unión , Biotina/química , ADN/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Regulación de la Expresión Génica , Humanos , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/genética , Proteínas Inmovilizadas/metabolismo , Interferones/química , Interferones/metabolismo , Secuencias Invertidas Repetidas , Ratones , Simulación de Dinámica Molecular , Inhibidor NF-kappaB alfa/química , Inhibidor NF-kappaB alfa/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Imagen Individual de Molécula/métodos , Factor de Transcripción ReIA/química , Factor de Transcripción ReIA/metabolismo
13.
Biophys J ; 121(6): 943-955, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35151633

RESUMEN

Cyanobacteria possesses the simplest circadian clock, composed of three proteins that act as a phosphorylation oscillator: KaiA, KaiB, and KaiC. The timing of this oscillator is determined by the fold-switch of KaiB, a structural rearrangement of its C-terminal half that is accompanied by a change in the oligomerization state. During the day, KaiB forms a stable tetramer (gsKaiB), whereas it adopts a monomeric thioredoxin-like fold during the night (fsKaiB). Although the structures and functions of both native states are well studied, little is known about the sequence and structure determinants that control their structural interconversion. Here, we used confinement molecular dynamics (CCR-MD) and folding simulations using structure-based models to show that the dissociation of the gsKaiB dimer is a key energetic event for the fold-switch. Hydrogen-deuterium exchange mass spectrometry (HDXMS) recapitulates the local stability of protein regions reported by CCR-MD, with both approaches consistently indicating that the energy and backbone flexibility changes are solely associated with the region that fold-switches between gsKaiB and fsKaiB and that the localized regions that differentially stabilize gsKaiB also involve regions outside the dimer interface. Moreover, two mutants (R23C and R75C) previously reported to be relevant for altering the rhythmicity of the Kai clock were also studied by HDXMS. Particularly, R75C populates dimeric and monomeric states with a deuterium incorporation profile comparable to the one observed for fsKaiB, emphasizing the importance of the oligomerization state of KaiB for the fold-switch. These findings suggest that the information necessary to control the rhythmicity of the cyanobacterial biological clock is, to a great extent, encoded within the KaiB sequence.


Asunto(s)
Relojes Circadianos , Cianobacterias , Proteínas Bacterianas/metabolismo , Ritmo Circadiano , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Deuterio , Fosforilación
14.
Biochemistry ; 61(2): 77-84, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34978431

RESUMEN

The W215A/E217A mutant thrombin is called "anticoagulant thrombin" because its activity toward its procoagulant substrate, fibrinogen, is reduced more than 500-fold whereas in the presence of thrombomodulin (TM) its activity toward its anticoagulant substrate, protein C, is reduced less than 10-fold. To understand how these mutations so dramatically alter one activity over the other, we compared the backbone dynamics of wild type thrombin to those of the W215A/E217A mutant thrombin by hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS). Our results show that the mutations cause the 170s, 180s, and 220s C-terminal ß-barrel loops near the sites of mutation to exchange more, suggesting that the structure of this region is disrupted. Far from the mutation sites, residues at the N-terminus of the heavy chain, which need to be buried in the Ile pocket for correct structuring of the catalytic triad, also exchange much more than in wild type thrombin. TM binding causes reduced H/D exchange in these regions and also alters the dynamics of the ß-strand that links the TM binding site to the catalytic Asp 102 in both wild type thrombin and in the W215A/E217A mutant thrombin. In contrast, whereas TM binding reduces the dynamics the 170, 180 and 220 s C-terminal ß-barrel loops in WT thrombin, this region remains disordered in the W215A/E217A mutant thrombin. Thus, TM partially restores the catalytic activity of W215A/E217A mutant thrombin by allosterically altering its dynamics in a manner similar to that of wild type thrombin.


Asunto(s)
Fibrinógeno/metabolismo , Proteína C/metabolismo , Trombina/metabolismo , Trombomodulina/metabolismo , Sitios de Unión , Humanos , Modelos Moleculares , Mutación Puntual , Unión Proteica , Conformación Proteica en Lámina beta , Proteolisis , Trombina/química , Trombina/genética
15.
Proc Natl Acad Sci U S A ; 116(33): 16394-16403, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31363053

RESUMEN

Heterotrimeric G proteins are key molecular switches that control cell behavior. The canonical activation of G proteins by agonist-occupied G protein-coupled receptors (GPCRs) has recently been elucidated from the structural perspective. In contrast, the structural basis for GPCR-independent G protein activation by a novel family of guanine-nucleotide exchange modulators (GEMs) remains unknown. Here, we present a 2.0-Å crystal structure of Gαi in complex with the GEM motif of GIV/Girdin. Nucleotide exchange assays, molecular dynamics simulations, and hydrogen-deuterium exchange experiments demonstrate that GEM binding to the conformational switch II causes structural changes that allosterically propagate to the hydrophobic core of the Gαi GTPase domain. Rearrangement of the hydrophobic core appears to be a common mechanism by which GPCRs and GEMs activate G proteins, although with different efficiency. Atomic-level insights presented here will aid structure-based efforts to selectively target the noncanonical G protein activation.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Microfilamentos/química , Receptores Acoplados a Proteínas G/química , Proteínas de Transporte Vesicular/química , Regulación Alostérica/genética , Cristalografía por Rayos X , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Células HeLa , Proteínas de Unión al GTP Heterotriméricas/genética , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Microfilamentos/genética , Simulación de Dinámica Molecular , Unión Proteica/genética , Conformación Proteica , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/genética , Proteínas de Transporte Vesicular/genética
16.
Proc Natl Acad Sci U S A ; 116(28): 14309-14318, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31227607

RESUMEN

Sensing and responding to environmental water deficiency and osmotic stresses are essential for the growth, development, and survival of plants. Recently, an osmolality-sensing ion channel called OSCA1 was discovered that functions in sensing hyperosmolality in Arabidopsis Here, we report the cryo-electron microscopy (cryo-EM) structure and function of an OSCA1 homolog from rice (Oryza sativa; OsOSCA1.2), leading to a model of how it could mediate hyperosmolality sensing and transport pathway gating. The structure reveals a dimer; the molecular architecture of each subunit consists of 11 transmembrane (TM) helices and a cytosolic soluble domain that has homology to RNA recognition proteins. The TM domain is structurally related to the TMEM16 family of calcium-dependent ion channels and lipid scramblases. The cytosolic soluble domain possesses a distinct structural feature in the form of extended intracellular helical arms that are parallel to the plasma membrane. These helical arms are well positioned to potentially sense lateral tension on the inner leaflet of the lipid bilayer caused by changes in turgor pressure. Computational dynamic analysis suggests how this domain couples to the TM portion of the molecule to open a transport pathway. Hydrogen/deuterium exchange mass spectrometry (HDXMS) experimentally confirms the conformational dynamics of these coupled domains. These studies provide a framework to understand the structural basis of proposed hyperosmolality sensing in a staple crop plant, extend our knowledge of the anoctamin superfamily important for plants and fungi, and provide a structural mechanism for potentially translating membrane stress to transport regulation.


Asunto(s)
Anoctaminas/ultraestructura , Proteínas de Arabidopsis/ultraestructura , Canales de Calcio/ultraestructura , Oryza/ultraestructura , Conformación Proteica , Secuencia de Aminoácidos/genética , Anoctaminas/química , Anoctaminas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Microscopía por Crioelectrón , Citoplasma/genética , Espectrometría de Masas , Potenciales de la Membrana/genética , Oryza/genética , Oryza/crecimiento & desarrollo , Presión Osmótica/fisiología , Agua/química
17.
Biochemistry ; 60(46): 3441-3448, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34159782

RESUMEN

A deeper understanding of how hydrogen/deuterium exchange mass spectrometry (HDX-MS) reveals allostery is important because HDX-MS can reveal allostery in systems that are not amenable to nuclear magnetic resonance (NMR) spectroscopy. We were able to study thrombin and its complex with thrombomodulin, an allosteric regulator, by both HDX-MS and NMR. In this Perspective, we compare and contrast the results from both experiments and from molecular dynamics simulations. NMR detects changes in the chemical environment around the protein backbone N-H bond vectors, providing residue-level information about the conformational exchange between distinct states. HDX-MS detects changes in amide proton solvent accessibility and H-bonding. Taking advantage of NMR relaxation dispersion measurements of the time scale of motions, we draw conclusions about the motions reflected in HDX-MS experiments. Both experiments detect allostery, but they reveal different components of the allosteric transition. The insights gained from integrating NMR and HDX-MS into thrombin dynamics enable a clearer interpretation of the evidence for allostery revealed by HDX-MS in larger protein complexes and assemblies that are not amenable to NMR.


Asunto(s)
Trombina/metabolismo , Trombomodulina/metabolismo , Regulación Alostérica , Cristalografía por Rayos X , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Trombina/ultraestructura , Trombomodulina/ultraestructura , Factores de Tiempo
18.
Mol Cell Proteomics ; 18(12): 2516-2523, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31594786

RESUMEN

Amide hydrogen-deuterium exchange mass spectrometry (HDX-MS) has become widely popular for mapping protein-ligand interfaces, for understanding protein-protein interactions, and for discovering dynamic allostery. Several platforms are now available which provide large data sets of amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data. Although many of these platforms provide some down-stream processing, a comprehensive software that provides the most commonly used down-stream processing tools such as automatic back-exchange correction options, analysis of overlapping peptides, calculations of relative deuterium uptake into regions of the protein after such corrections, rigorous statistical analysis of the significance of uptake differences, and generation of high quality figures for data presentation is not yet available. Here we describe the Deuterium Exchange Correction and Analysis (DECA) software package, which provides all these downstream processing options for data from the most popular mass spectrometry platforms. The major functions of the software are demonstrated on sample data.


Asunto(s)
Deuterio/metabolismo , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio/métodos , Programas Informáticos , Conjuntos de Datos como Asunto , Procesamiento Automatizado de Datos , Interfaz Usuario-Computador
19.
Biophys J ; 118(1): 96-104, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31810657

RESUMEN

RfaH, a two-domain protein from a universally conserved NusG/Spt5 family of regulators, is required for the transcription and translation of long virulence and conjugation operons in many Gram-negative bacterial pathogens. Escherichia coli RfaH action is controlled by a unique large-scale structural rearrangement triggered by recruitment to transcription elongation complexes through a specific DNA element. Upon recruitment, the C-terminal domain of RfaH refolds from an α-hairpin, which is bound to RNA polymerase binding site within the N-terminal domain, into an unbound ß-barrel that interacts with the ribosome. Although structures of the autoinhibited (α-hairpin) and active (ß-barrel) states and plausible refolding pathways have been reported, how this reversible switch is encoded within RfaH sequence and structure is poorly understood. Here, we combined hydrogen-deuterium exchange measurements by mass spectrometry and nuclear magnetic resonance with molecular dynamics to evaluate the differential local stability between both RfaH folds. Deuteron incorporation reveals that the tip of the C-terminal hairpin (residues 125-145) is stably folded in the autoinhibited state (∼20% deuteron incorporation), whereas the rest of this domain is highly flexible (>40% deuteron incorporation), and its flexibility only decreases in the ß-folded state. Computationally predicted ΔG agree with these results by displaying similar anisotropic stability within the tip of the α-hairpin and on neighboring N-terminal domain residues. Remarkably, the ß-folded state shows comparable structural flexibility than nonmetamorphic homologs. Our findings provide information critical for understanding the metamorphic behavior of RfaH and other chameleon proteins and for devising targeted strategies to combat bacterial infections.


Asunto(s)
Proteínas de Escherichia coli/química , Factores de Elongación de Péptidos/química , Transactivadores/química , Proteínas de Escherichia coli/metabolismo , Simulación de Dinámica Molecular , Factores de Elongación de Péptidos/metabolismo , Conformación Proteica , Estabilidad Proteica , Transactivadores/metabolismo
20.
Nucleic Acids Res ; 46(1): 279-292, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29186573

RESUMEN

The HORMA domain is a highly conserved protein-protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint protein Mad2 and the meiotic HORMAD proteins. HORMA domain proteins interact with short 'closure motifs' in partner proteins by wrapping their C-terminal 'safety belt' region entirely around these motifs, forming topologically-closed complexes. Closure motif binding and release requires large-scale conformational changes in the HORMA domain, but such changes have only been observed in Mad2. Here, we show that Saccharomyces cerevisiae Hop1, a master regulator of meiotic recombination, possesses conformational dynamics similar to Mad2. We identify closure motifs in the Hop1 binding partner Red1 and in Hop1 itself, revealing that HORMA domain-closure motif interactions underlie both Hop1's initial recruitment to the chromosome axis and its self-assembly on the axis. We further show that Hop1 adopts two distinct folded states in solution, one corresponding to the previously-observed 'closed' conformation, and a second more extended state in which the safety belt region has disengaged from the HORMA domain core. These data reveal strong mechanistic similarities between meiotic HORMADs and Mad2, and provide a mechanistic basis for understanding both meiotic chromosome axis assembly and its remodeling by the AAA+ ATPase Pch2/TRIP13.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas Mad2/química , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Sitios de Unión/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA