Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 1024, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200135

RESUMEN

Scalar translocation is a severe form of intra-cochlear trauma during cochlear implant (CI) electrode insertion. This study explored the hypothesis that the dimensions of the cochlear basal turn and orientation of its inferior segment relative to surgically relevant anatomical structures influence the scalar translocation rates of a pre-curved CI electrode. In a cohort of 40 patients implanted with the Advanced Bionics Mid-Scala electrode array, the scalar translocation group (40%) had a significantly smaller mean distance A of the cochlear basal turn (p < 0.001) and wider horizontal angle between the inferior segment of the cochlear basal turn and the mastoid facial nerve (p = 0.040). A logistic regression model incorporating distance A (p = 0.003) and horizontal facial nerve angle (p = 0.017) explained 44.0-59.9% of the variance in scalar translocation and correctly classified 82.5% of cases. Every 1mm decrease in distance A was associated with a 99.2% increase in odds of translocation [95% confidence interval 80.3%, 100%], whilst every 1-degree increase in the horizontal facial nerve angle was associated with an 18.1% increase in odds of translocation [95% CI 3.0%, 35.5%]. The study findings provide an evidence-based argument for the development of a navigation system for optimal angulation of electrode insertion during CI surgery to reduce intra-cochlear trauma.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Traumatismos Craneocerebrales , Humanos , Cóclea/cirugía , Electrodos Implantados , Biónica , Translocación Genética
2.
Biomed Opt Express ; 15(2): 772-788, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38404298

RESUMEN

Regenerative therapies show promise in reversing sight loss caused by degenerative eye diseases. Their precise subretinal delivery can be facilitated by robotic systems alongside with Intra-operative Optical Coherence Tomography (iOCT). However, iOCT's real-time retinal layer information is compromised by inferior image quality. To address this limitation, we introduce an unpaired video super-resolution methodology for iOCT quality enhancement. A recurrent network is proposed to leverage temporal information from iOCT sequences, and spatial information from pre-operatively acquired OCT images. Additionally, a patchwise contrastive loss enables unpaired super-resolution. Extensive quantitative analysis demonstrates that our approach outperforms existing state-of-the-art iOCT super-resolution models. Furthermore, ablation studies showcase the importance of temporal aggregation and contrastive loss in elevating iOCT quality. A qualitative study involving expert clinicians also confirms this improvement. The comprehensive evaluation demonstrates our method's potential to enhance the iOCT image quality, thereby facilitating successful guidance for regenerative therapies.

3.
Int J Comput Assist Radiol Surg ; 17(5): 877-883, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35364774

RESUMEN

PURPOSE: Intra-retinal delivery of novel sight-restoring therapies will require the precision of robotic systems accompanied by excellent visualisation of retinal layers. Intra-operative Optical Coherence Tomography (iOCT) provides cross-sectional retinal images in real time but at the cost of image quality that is insufficient for intra-retinal therapy delivery.This paper proposes a super-resolution methodology that improves iOCT image quality leveraging spatiotemporal consistency of incoming iOCT video streams. METHODS: To overcome the absence of ground truth high-resolution (HR) images, we first generate HR iOCT images by fusing spatially aligned iOCT video frames. Then, we automatically assess the quality of the HR images on key retinal layers using a deep semantic segmentation model. Finally, we use image-to-image translation models (Pix2Pix and CycleGAN) to enhance the quality of LR images via quality transfer from the estimated HR domain. RESULTS: Our proposed methodology generates iOCT images of improved quality according to both full-reference and no-reference metrics. A qualitative study with expert clinicians also confirms the improvement in the delineation of pertinent layers and in the reduction of artefacts. Furthermore, our approach outperforms conventional denoising filters and the learning-based state-of-the-art. CONCLUSIONS: The results indicate that the learning-based methods using the estimated, through our pipeline, HR domain can be used to enhance the iOCT image quality. Therefore, the proposed method can computationally augment the capabilities of iOCT imaging helping this modality support the vitreoretinal surgical interventions of the future.


Asunto(s)
Retina , Tomografía de Coherencia Óptica , Estudios Transversales , Humanos , Retina/diagnóstico por imagen , Retina/cirugía , Lámpara de Hendidura , Tomografía de Coherencia Óptica/métodos
4.
Int J Comput Assist Radiol Surg ; 15(7): 1147-1155, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32385597

RESUMEN

PURPOSE: In robotic-assisted partial nephrectomy (RAPN), the use of intraoperative ultrasound (IOUS) helps to localise and outline the tumours as well as the blood vessels within the kidney. The aim of this work is to evaluate the use of the pneumatically attachable flexible (PAF) rail system for US 3D reconstruction of malignant masses in RAPN. The PAF rail system is a novel device developed and previously presented by the authors to enable track-guided US scanning. METHODS: We present a comparison study between US 3D reconstruction of masses based on: the da Vinci Surgical System kinematics, single- and stereo-camera tracking of visual markers embedded on the probe. An US-realistic kidney phantom embedding a mass is used for testing. A new design for the US probe attachment to enhance the performance of the kinematic approach is presented. A feature extraction algorithm is proposed to detect the margins of the targeted mass in US images. RESULTS: To evaluate the performance of the investigated approaches the resulting 3D reconstructions have been compared to a CT scan of the phantom. The data collected indicates that single camera reconstruction outperformed the other approaches, reconstructing with a sub-millimetre accuracy the targeted mass. CONCLUSIONS: This work demonstrates that the PAF rail system provides a reliable platform to enable accurate US 3D reconstruction of masses in RAPN procedures. The proposed system has also the potential to be employed in other surgical procedures such as hepatectomy or laparoscopic liver resection.


Asunto(s)
Laparoscopía/métodos , Nefrectomía/métodos , Procedimientos Quirúrgicos Robotizados/métodos , Ultrasonografía Intervencional/métodos , Humanos , Imagenología Tridimensional , Tomografía Computarizada por Rayos X , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA