Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 124(8): 084802, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32167312

RESUMEN

Acceleration of particles from the interaction of ultraintense laser pulses up to 5×10^{21} W cm^{-2} with thin foils is investigated experimentally. The electron beam parameters varied with decreasing spot size, not just laser intensity, resulting in reduced temperatures and divergence. In particular, the temperature saturated due to insufficient acceleration length in the tightly focused spot. These dependencies affected the sheath-accelerated protons, which showed poorer spot-size scaling than widely used scaling laws. It is therefore shown that maximizing laser intensity by using very small foci has reducing returns for some applications.

2.
Sci Rep ; 12(1): 2346, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173182

RESUMEN

Graphene is known as an atomically thin, transparent, highly electrically and thermally conductive, light-weight, and the strongest 2D material. We investigate disruptive application of graphene as a target of laser-driven ion acceleration. We develop large-area suspended graphene (LSG) and by transferring graphene layer by layer we control the thickness with precision down to a single atomic layer. Direct irradiations of the LSG targets generate MeV protons and carbons from sub-relativistic to relativistic laser intensities from low contrast to high contrast conditions without plasma mirror, evidently showing the durability of graphene.

3.
Rev Sci Instrum ; 91(9): 093305, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33003787

RESUMEN

We have developed a novel discrimination methodology to identify ions in multispecies beams with similar charge-to-mass ratios, but different atomic numbers. After an initial separation by charge-to-mass ratios using co-linear electric and magnetic fields, individual ions can be discriminated by considering the linear energy transfer of ions irradiating a stimulable phosphor plate (Fujifilm imaging plate) by comparison with the Monte Carlo calculation. We apply the method to energetic multispecies laser-driven ion beams and use it to identify silver ions produced by the interaction between a high contrast, high intensity laser pulse; and a sub-micrometer silver foil target. We also show that this method can be used to calibrate the imaging plate for arbitrary ion species in the range of Z ≥ 6 with dE/dx > 0.1 MeV/µm without requiring individual calibration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA