Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 50(12): 3572-3575, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37421427

RESUMEN

INTRODUCTION: For the implementation of suitable radiation safety measures in [177Lu]Lu-PSMA-617 therapy, additional insight into excretion kinetics is important. This study evaluates this kinetics in prostate cancer patients via direct urine measurements. METHODS: Both the short-term (up to 24 h, n = 28 cycles) and long-term kinetics (up to 7 weeks, n = 35 samples) were evaluated by collection of urine samples. Samples were measured on a scintillation counter to determine excretion kinetics. RESULTS: The mean excretion half-time during the first 20 h was 4.9 h. Kinetics was significantly different for patients with kidney function below or above eGFR 65 ml/min. Calculated skin equivalent dose in case of urinary contamination was between 50 and 145 mSv when it was caused between 0 and 8 h p.i.. Measurable amounts of 177Lu were found in urine samples up to 18 days p.i.. CONCLUSION: Excretion kinetics of [177Lu]Lu-PSMA-617 is especially relevant during the first 24 h, when accurate radiation safety measures are important to prevent skin contamination. Measures for accurate waste management are relevant up to 18 days.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Radiofármacos/uso terapéutico , Antígeno Prostático Específico , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/tratamiento farmacológico , Dipéptidos/uso terapéutico , Compuestos Heterocíclicos con 1 Anillo/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Lutecio/uso terapéutico
2.
Eur J Nucl Med Mol Imaging ; 50(4): 1195-1204, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36454268

RESUMEN

PURPOSE: There is no evidence-based systemic therapy for patients with progressive meningiomas for whom surgery or external radiotherapy is no longer an option. In this study, the efficacy and safety of peptide receptor radionuclide therapy (PRRT) in patients with progressive, treatment-refractory meningiomas were evaluated. METHODS: Retrospective analysis of all meningioma patients treated with [177Lu]Lu-DOTA-TATE from 2000 to 2020 in our centre. Primary outcomes were response according to RANO bidimensional and volumetric criteria and progression-free survival (PFS). Overall survival (OS) and tumour growth rate (TGR) were secondary endpoints. TGR was calculated as the percentage change in surface or volume per month. RESULTS: Fifteen meningioma patients received [177Lu]Lu-DOTA-TATE (7.5-29.6 GBq). Prior to PRRT, all patients had received external radiotherapy, and 14 patients had undergone surgery. All WHO grades were included WHO 1 (n=3), WHO 2 (n=5), and WHO 3 (n=6). After PRRT, stable disease was observed in six (40%) patients. The median PFS was 7.8 months with a 6-month PFS rate of 60%. The median OS was 13.6 months with a 12-month OS rate of 60%. All patients had progressive disease prior to PRRT, with an average TGR of 4.6% increase in surface and 14.8% increase in volume per month. After PRRT, TGR declined to 3.1% in surface (p=0.016) and 5.0% in volume (p=0.013) per month. CONCLUSION: In this cohort of meningioma patients with exhaustion of surgical and radiotherapeutic options and progressive disease, it was shown that PRRT plays a role in controlling tumour growth.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Tumores Neuroendocrinos , Compuestos Organometálicos , Humanos , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/radioterapia , Meningioma/radioterapia , Tumores Neuroendocrinos/radioterapia , Octreótido/uso terapéutico , Compuestos Organometálicos/uso terapéutico , Radioisótopos , Receptores de Péptidos , Estudios Retrospectivos
3.
J Transl Med ; 20(1): 137, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35303930

RESUMEN

BACKGROUND: Medical applications of ionising radiation and associated radiation protection research often encounter long delays and inconsistent implementation when translated into clinical practice. A coordinated effort is needed to analyse the research needs for innovation transfer in radiation-based high-quality healthcare across Europe which can inform the development of an innovation transfer framework tailored for equitable implementation of radiation research at scale. METHODS: Between March and September 2021 a Delphi methodology was employed to gain consensus on key translational challenges from a range of professional stakeholders. A total of three Delphi rounds were conducted using a series of electronic surveys comprised of open-ended and closed-type questions. The surveys were disseminated via the EURAMED Rocc-n-Roll consortium network and prominent medical societies in the field. Approximately 350 professionals were invited to participate. Participants' level of agreement with each generated statement was captured using a 6-point Likert scale. Consensus was defined as median ≥ 4 with ≥ 60% of responses in the upper tertile of the scale. Additionally, the stability of responses across rounds was assessed. RESULTS: In the first Delphi round a multidisciplinary panel of 20 generated 127 unique statements. The second and third Delphi rounds recruited a broader sample of 130 individuals to rate the extent to which they agreed with each statement as a key translational challenge. A total of 60 consensus statements resulted from the iterative Delphi process of which 55 demonstrated good stability. Ten statements were identified as high priority challenges with ≥ 80% of statement ratings either 'Agree' or 'Strongly Agree'. CONCLUSION: A lack of interoperability between systems, insufficient resources, unsatisfactory education and training, and the need for greater public awareness surrounding the benefits, risks, and applications of ionising radiation were identified as principal translational challenges. These findings will help to inform a tailored innovation transfer framework for medical radiation research.


Asunto(s)
Protección Radiológica , Consenso , Técnica Delphi , Humanos , Radiación Ionizante , Encuestas y Cuestionarios
4.
Eur J Nucl Med Mol Imaging ; 49(11): 3627-3638, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35556158

RESUMEN

PURPOSE: Targeting the prostate-specific membrane antigen (PSMA) using lutetium-177-labeled PSMA-specific tracers has become a very promising novel therapy option for prostate cancer (PCa). The efficacy of this therapy might be further improved by replacing the ß-emitting lutetium-177 with the α-emitting actinium-225. Actinium-225 is thought to have a higher therapeutic efficacy due to the high linear energy transfer (LET) of the emitted α-particles, which can increase the amount and complexity of the therapy induced DNA double strand breaks (DSBs). Here we evaluated the relative biological effectiveness of [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T by assessing in vitro binding characteristics, dosimetry, and therapeutic efficacy. METHODS AND RESULTS: The PSMA-expressing PCa cell line PC3-PIP was used for all in vitro assays. First, binding and displacement assays were performed, which revealed similar binding characteristics between [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T. Next, the assessment of the number of 53BP1 foci, a marker for the number of DNA double strand breaks (DSBs), showed that cells treated with [225Ac]Ac-PSMA-I&T had slower DSB repair kinetics compared to cells treated with [177Lu]Lu-PSMA-I&T. Additionally, clonogenic survival assays showed that specific targeting with [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T caused a dose-dependent decrease in survival. Lastly, after dosimetric assessment, the relative biological effectiveness (RBE) of [225Ac]Ac-PSMA-I&T was found to be 4.2 times higher compared to [177Lu]Lu-PSMA-I&T. CONCLUSION: We found that labeling of PSMA-I&T with lutetium-177 or actinium-225 resulted in similar in vitro binding characteristics, indicating that the distinct biological effects observed in this study are not caused by a difference in uptake of the two tracers. The slower repair kinetics of [225Ac]Ac-PSMA-I&T compared to [177Lu]Lu-PSMA-I&T correlates to the assumption that irradiation with actinium-225 causes more complex, more difficult to repair DSBs compared to lutetium-177 irradiation. Furthermore, the higher RBE of [225Ac]Ac-PSMA-I&T compared to [177Lu]Lu-PSMA-I&T underlines the therapeutic potential for the treatment of PCa.


Asunto(s)
Lutecio , Neoplasias de la Próstata Resistentes a la Castración , Actinio , Línea Celular Tumoral , ADN , Dipéptidos , Compuestos Heterocíclicos con 1 Anillo , Humanos , Lutecio/uso terapéutico , Masculino , Antígeno Prostático Específico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Radioisótopos
5.
Eur J Nucl Med Mol Imaging ; 49(13): 4705-4715, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35829749

RESUMEN

PURPOSE: Transarterial radioembolization (TARE) is a treatment for liver tumours based on injection of radioactive microspheres in the hepatic arterial system. It is crucial to achieve a maximum tumour dose for an optimal treatment response, while minimizing healthy liver dose to prevent toxicity. There is, however, no intraprocedural feedback on the dose distribution, as nuclear imaging can only be performed after treatment. As holmium-166 (166Ho) microspheres can be quantified with MRI, we investigate the feasibility and safety of performing 166Ho TARE within an MRI scanner and explore the potential of intraprocedural MRI-based dosimetry. METHODS: Six patients were treated with 166Ho TARE in a hybrid operating room. Per injection position, a microcatheter was placed under angiography guidance, after which patients were transported to an adjacent 3-T MRI system. After MRI confirmation of unchanged catheter location, 166Ho microspheres were injected in four fractions, consisting of 10%, 30%, 30% and 30% of the planned activity, alternated with holmium-sensitive MRI acquisition to assess the microsphere distribution. After the procedures, MRI-based dose maps were calculated from each intraprocedural image series using a dedicated dosimetry software package for 166Ho TARE. RESULTS: Administration of 166Ho microspheres within the MRI scanner was feasible in 9/11 (82%) injection positions. Intraprocedural holmium-sensitive MRI allowed for tumour dosimetry in 18/19 (95%) of treated tumours. Two CTCAE grade 3-4 toxicities were observed, and no adverse events were attributed to treatment in the MRI. Towards the last fraction, 4/18 tumours exhibited signs of saturation, while in 14/18 tumours, the microsphere uptake patterns did not deviate from the linear trend. CONCLUSION: This study demonstrated feasibility and preliminary safety of a first in-human application of TARE within a clinical MRI system. Intraprocedural MRI-based dosimetry enabled dynamic insight in the microsphere distribution during TARE. This proof of concept yields unique possibilities to better understand microsphere distribution in vivo and to potentially optimize treatment efficacy through treatment personalization. REGISTRATION: Clinicaltrials.gov, identifier NCT04269499, registered on February 13, 2020 (retrospectively registered).


Asunto(s)
Embolización Terapéutica , Neoplasias Hepáticas , Humanos , Embolización Terapéutica/efectos adversos , Embolización Terapéutica/métodos , Holmio/uso terapéutico , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/radioterapia , Imagen por Resonancia Magnética , Microesferas , Radioisótopos de Itrio
6.
Eur J Nucl Med Mol Imaging ; 49(13): 4440-4451, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35951084

RESUMEN

PURPOSE: The radiolabeled gastrin-releasing peptide receptor (GRPR)-targeting antagonist NeoB is a promising radioligand for imaging and therapy of GRPR-expressing malignancies. In the current study, we aimed to discover the target organs of toxicity and the radiotoxic effects to these organs, when repeated dosages of [177Lu]Lu-NeoB are administered to healthy female and male mice. METHODS: Animals received either 3 injections, with a 7-day interval, of vehicle (control group 1), 1200 pmol [175Lu]Lu-NeoB (control group 2) or 40 MBq/400 pmol, 80 MBq/800 pmol, and 120 MBq/1200 pmol [177Lu]Lu-NeoB (treatment groups 1, 2, and 3, respectively). At week 5, 19, and 43 after the first injection acute, early, and late organ toxicity, respectively, was determined. For this, histopathological and blood analyses were performed. To correlate the observed toxicity to absorbed dose, we also performed extensive biodistribution and dosimetry studies. RESULTS: The biodistribution study showed the highest absorbed doses in GRPR-expressing pancreas, the liver, and the kidneys (the main organs of excretion). Both control groups and almost all animals of treatment group 1 did not show any treatment-related toxicological effects. Despite the high absorbed doses, no clear microscopic signs of toxicity were found in the pancreas and the liver. Histological analysis indicated kidney damage in the form of hydronephrosis and nephropathy in treatment groups 2 and 3 that were sacrificed at the early and late time point. In the same groups, increased blood urea nitrogen levels were found. CONCLUSION: In general, repeated administration of [177Lu]Lu-NeoB was tolerated. The most significant radiotoxic effects were found in the kidneys, similar to other clinically applied radioligands. The results of this study underline the potential of [177Lu]Lu-NeoB as a promising option for clinical therapy.


Asunto(s)
Radiometría , Receptores de Bombesina , Animales , Masculino , Femenino , Ratones , Distribución Tisular , Riñón/metabolismo , Lutecio/uso terapéutico
7.
Eur J Nucl Med Mol Imaging ; 49(2): 460-469, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34218300

RESUMEN

INTRODUCTION: While [177Lu]Lu-PSMA radioligand therapy is currently only applied in end-stage metastatic castrate-resistant prostate cancer (mCRPC) patients, also low-volume hormone-sensitive metastatic prostate cancer (mHSPC) patients can benefit from it. However, there are toxicity concerns related to the sink effect in low-volume disease. This prospective study aims to determine the kinetics of [177Lu]Lu-PSMA in mHSPC patients, analyzing the doses to organs at risk (salivary glands, kidneys, liver, and bone marrow) and tumor lesions < 1 cm diameter. METHODS: Ten mHSPC patients underwent two cycles of [177Lu]Lu-PSMA therapy. Three-bed position SPECT/CT was performed at 5 time points after each therapy. Organ dosimetry and lesion dosimetry were performed using commercial software and a manual approach, respectively. Correlation between absorbed index lesion dose and treatment response (PSA drop of > 50% at the end of the study) was calculated and given as Spearman's r and p-values. RESULTS: Kinetics of [177Lu]Lu-PSMA in mHSPC patients are comparable to those in mCRPC patients. Lesion absorbed dose was high (3.25 ± 3.19 Gy/GBq) compared to organ absorbed dose (salivary glands: 0.39 ± 0.17 Gy/GBq, kidneys: 0.49 ± 0.11 Gy/GBq, liver: 0.09 ± 0.01 Gy/GBq, bone marrow: 0.017 ± 0.008 Gy/GBq). A statistically significant correlation was found between treatment response and absorbed index lesion dose (p = 0.047). CONCLUSIONS: We successfully performed small lesion dosimetry and showed that the tumor sink effect in mHSPC patients is of less concern than was expected. Tumor-to-organ ratio of absorbed dose was high and tumor uptake correlates with PSA response. Additional treatment cycles are legitimate in terms of organ toxicity and could lead to better tumor response.


Asunto(s)
Lutecio , Antígeno Prostático Específico , Neoplasias de la Próstata , Radiofármacos , Hormonas/metabolismo , Humanos , Lutecio/efectos adversos , Lutecio/farmacocinética , Lutecio/uso terapéutico , Masculino , Órganos en Riesgo/diagnóstico por imagen , Órganos en Riesgo/efectos de la radiación , Estudios Prospectivos , Antígeno Prostático Específico/efectos adversos , Antígeno Prostático Específico/sangre , Antígeno Prostático Específico/farmacocinética , Antígeno Prostático Específico/uso terapéutico , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/secundario , Dosis de Radiación , Radiofármacos/efectos adversos , Radiofármacos/farmacocinética , Radiofármacos/uso terapéutico , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Resultado del Tratamiento
8.
Eur J Nucl Med Mol Imaging ; 49(4): 1101-1112, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34623453

RESUMEN

INTRODUCTION: Patient eligibility for [177Lu]Lu-PSMA therapy remains a challenge, with only 40-60% response rate when patient selection is done based on the lesion uptake (SUV) on [68Ga]Ga-PSMA-PET/CT. Prediction of absorbed dose based on this pre-treatment scan could improve patient selection and help to individualize treatment by maximizing the absorbed dose to target lesions while adhering to the threshold doses for the organs at risk (kidneys, salivary glands, and liver). METHODS: Ten patients with low-volume hormone-sensitive prostate cancer received a pre-therapeutic [68Ga]Ga-PSMA-11 PET/CT, followed by 3 GBq [177Lu]Lu-PSMA-617 therapy. Intra-therapeutically, SPECT/CT was acquired at 1, 24, 48, 72, and 168 h. Absorbed dose in organs and lesions (n = 22) was determined according to the MIRD scheme. Absorbed dose prediction based on [68Ga]Ga-PSMA-PET/CT was performed using tracer uptake at 1 h post-injection and the mean tissue effective half-life on SPECT. Predicted PET/actual SPECT absorbed dose ratios were determined for each target volume. RESULTS: PET/SPECT absorbed dose ratio was 1.01 ± 0.21, 1.10 ± 0.15, 1.20 ± 0.34, and 1.11 ± 0.29 for kidneys (using a 2.2 scaling factor), liver, submandibular, and parotid glands, respectively. While a large inter-patient variation in lesion kinetics was observed, PET/SPECT absorbed dose ratio was 1.3 ± 0.7 (range: 0.4-2.7, correlation coefficient r = 0.69, p < 0.01). CONCLUSION: A single time point [68Ga]Ga-PSMA-PET scan can be used to predict the absorbed dose of [177Lu]Lu-PSMA therapy to organs, and (to a limited extent) to lesions. This strategy facilitates in treatment management and could increase the personalization of [177Lu]Lu-PSMA therapy.


Asunto(s)
Radioisótopos de Galio , Neoplasias de la Próstata Resistentes a la Castración , Dipéptidos , Compuestos Heterocíclicos con 1 Anillo , Humanos , Lutecio , Masculino , Órganos en Riesgo/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones , Antígeno Prostático Específico , Neoplasias de la Próstata Resistentes a la Castración/patología , Radiofármacos/uso terapéutico
9.
Eur J Nucl Med Mol Imaging ; 49(6): 2064-2076, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34932154

RESUMEN

RATIONALE: Prolonged in vivo evaluation of PSMA tracers could improve tumor imaging and patient selection for 177Lu-PSMA-617 and 177Lu-PSMA-I&T. In this study, we present the radiolabeling method of PSMA-617 and PSMA-I&T with the long-lived positron emitter 89Zr to enable PET imaging up to 7 days post-injection. We compared the biodistribution of 89Zr-PSMA-617 and 89Zr-PSMA-I&T to those of 177Lu-PSMA-617 and 177Lu-PSMA-I&T, respectively, in a PSMA+ xenograft model. Moreover, we provide the first human 89Zr-PSMA-617 images. MATERIALS AND METHODS: PSMA ligands were labeled with 50-55 MBq [89Zr]ZrCl4 using a two-step labeling protocol. For biodistribution, BALB/c nude mice bearing PSMA+ and PSMA- xenografts received 0.6 µg (0.6-1 MBq) of 89Zr-PSMA-617, 89Zr-PSMA-I&T, 177Lu-PSMA-617, or 177Lu-PSMA-I&T intravenously. Ex vivo biodistribution and PET/SPECT imaging were performed up to 168 h post-injection. Dosimetry was performed from the biodistribution data. The patient received 90.5 MBq 89Zr-PSMA-617 followed by PET/CT imaging. RESULTS: 89Zr-labeled PSMA ligands showed a comparable ex vivo biodistribution to its respective 177Lu-labeled counterparts with high tumor accumulation in the PSMA+ xenografts. However, using a dose estimation model for 177Lu, absorbed radiation dose in bone and kidneys differed among the 177Lu-PSMA and 89Zr-PSMA tracers. 89Zr-PSMA-617 PET in the first human patient showed high contrast of PSMA expressing tissues up to 48 h post-injection. CONCLUSION: PSMA-617 and PSMA-I&T were successfully labeled with 89Zr and demonstrated high uptake in PSMA+ xenografts, which enabled PET up to 168 h post-injection. The biodistribution of 89Zr-PSMA-I&T and 89Zr-PSMA-617 resembled that of 177Lu-PSMA-I&T and 177Lu-PSMA-617, respectively. The first patient 89Zr-PSMA-617 PET images were of high quality warranting further clinical investigation.


Asunto(s)
Lutecio , Tomografía Computarizada por Tomografía de Emisión de Positrones , Animales , Línea Celular Tumoral , Dipéptidos , Compuestos Heterocíclicos con 1 Anillo , Humanos , Ligandos , Ratones , Ratones Desnudos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/métodos , Antígeno Prostático Específico , Radioisótopos , Radiofármacos/farmacocinética , Distribución Tisular
10.
Eur J Nucl Med Mol Imaging ; 48(12): 3776-3790, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33839892

RESUMEN

PURPOSE: To systematically review all current evidence into the dose-response relation of yttrium-90 and holmium-166 selective internal radiation therapy (SIRT) in primary and secondary liver cancer. METHODS: A standardized search was performed in PubMed (MEDLINE), Embase, and the Cochrane Library in order to identify all published articles on dose-response evaluation in SIRT. In order to limit the results, all articles that investigated SIRT in combination with other therapy modalities (such as chemotherapy) were excluded. RESULTS: A total of 3038 records were identified of which 487 were screened based on the full text. Ultimately, 37 studies were included for narrative analysis. Meta-analysis could not be performed due to the large heterogeneity in study and reporting designs. Out of 37 studies, 30 reported a 'mean dose threshold' that needs to be achieved in order to expect a response. This threshold appears to be higher for hepatocellular carcinoma (HCC, 100-250 Gy) than for colorectal cancer metastases (CRC, 40-60 Gy). Reported thresholds tend to be lower for resin microspheres than when glass microspheres are used. CONCLUSION: Although the existing evidence demonstrates a dose-response relationship in SIRT for both primary liver tumours and liver metastases, many pieces of the puzzle are still missing, hampering the definition of standardized dose thresholds. Nonetheless, most current evidence points towards a target mean dose of 100-250 Gy for HCC and 40-60 Gy for CRC. The field would greatly benefit from a reporting standard and prospective studies designed to elucidate the dose-response relation in different tumour types.


Asunto(s)
Braquiterapia , Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/radioterapia , Humanos , Neoplasias Hepáticas/radioterapia , Microesferas , Estudios Prospectivos , Radioisótopos de Itrio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA