Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Chemistry ; 30(18): e202304238, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270276

RESUMEN

Saxitoxin (STX, 1) is a representative compound of paralytic shellfish toxins (PSTs) that are produced by marine dinoflagellates and freshwater cyanobacteria. Although several pathways have been proposed for the biosynthesis of STX, the order of ring and side chain hydroxylation, and formation of the tricyclic skeleton have not been well established. In this study, 12,12-dideoxy-decarbamoyloxySTX (dd-doSTX, 2), the most reduced STX analogue having the tricyclic skeleton, and its analogues, 12ß-deoxy-doSTX (12ß-d-doSTX, 3), 12α-deoxy-doSTX (12α-d-doSTX, 4), and doSTX (5), were synthesized, and these compounds were screened in the toxic microalgae using high-resolution LCMSMS. dd-doSTX (2) and 12ß-d-doSTX (3) were identified in the PSTs-producing dinoflagellates (Alexandrium catenella, A. pacificum, and/or Gymnodinium catenatum) and in the cyanobacterium Dolichospermum circinale (TA04). doSTX (5), previously isolated from the dinoflagellate G. catenatum, was also identified in D. circinale (TA04). Furthermore, the conversion of 2 to 3, and 4 to 5, by SxtT with VanB, a reported Rieske oxygenase and its redox partner in STX biosynthesis, was confirmed. These results support that 2 is a possible biosynthetic precursor of STX, and that ring and side-chain hydroxylations proceed after cyclization.


Asunto(s)
Dinoflagelados , Microalgas , Saxitoxina/análogos & derivados , Saxitoxina/química , Oxigenasas
2.
Artículo en Inglés | MEDLINE | ID: mdl-38886126

RESUMEN

Dinophysistoxin 1 (DTX1, 1) and okadaic acid (OA, 2), produced by the dinoflagellates Dinophysis spp. and Prorocentrum spp., are primary diarrhetic shellfish toxins (DSTs), which may cause gastric illness in people consuming such as bivalves. Both compounds convert to dinophysistoxin 3 (DTX3, 3; generic name for 1 and 2 with fatty acids conjugated at 7-OH) in bivalves. The enzyme okadaic acid O-acyl transferase (OOAT) is a membrane protein found in the microsomes of the digestive glands of bivalves. In this study, we established an in vitro enzymatic conversion reaction using 4-nitro-2,1,3-benzoxadiazole (NBD)-OA (4), an OA derivative conjugated with (R)-(-)-4-nitro-7-(3-aminopyrrolidin-1-yl)-2,1,3-benzoxadiazole (NBD-APy) on 1-CO2H, as a substrate. We detected the enzymatically produced 3, NBD-7-O-palmitoyl-OA (NBD-Pal-OA), using high-performance liquid chromatography-fluorescence detection. We believe that an OOAT assay using 4 will facilitate the fractionation and isolation of OOAT in the future.

3.
Anal Chem ; 94(32): 11144-11150, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35938415

RESUMEN

Saxitoxin (STX) is a potent neurotoxin that is biosynthesized by toxic dinoflagellates and accumulated in shellfish via the food chain. STX and its various analogues are now monitored in shellfish by the hygiene authorities in many countries with instrumental analytical methods, which require calibration with standards. Unfortunately, STX is registered as a chemical warfare agent in Schedule 1 of the Chemical Weapons Convention, and this has made it difficult to import calibration standards into some countries. We aimed to avoid violation of the Chemical Weapons Convention and facilitate analyses by preparing calibration standards based on unnatural nontoxic antipodal STXs (ent-STXs) with the same physicochemical properties as natural STXs. Our findings demonstrate that the nontoxic ent-STXs can be safely utilized as alternative reference materials of STXs in the routine monitoring program by the local authorities and consequently can lead to reduced usage of STX.


Asunto(s)
Dinoflagelados , Saxitoxina , Neurotoxinas/análisis , Estándares de Referencia , Saxitoxina/análisis , Saxitoxina/toxicidad , Alimentos Marinos/análisis
4.
Chem Res Toxicol ; 35(11): 1950-1961, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36315108

RESUMEN

Voltage-gated sodium channels (Nav) are closely associated with epilepsy, cardiac and skeletal muscle diseases, and neuropathic pain. Several toxic compounds have been isolated from the marine sponge Halichondria okadai; however, toxic substances that modulate Nav are yet to be identified. This study aimed to identify Nav inhibitors from two snake venoms and H. okadai using mouse neuroblastoma Neuro-2A cells (N2A), which primarily express the specific Nav subtype Nav1.7, using whole-cell patch-clamp recordings. We successfully isolated arachidonic acid (AA, 1) from the hexane extract of H. okadai, and then the fatty acid-mediated modulation of Nav in N2A was investigated in detail for the first time. Octanoic acid (2), palmitic acid (3), and oleic acid (4) showed no inhibitory activity at 100 µM, whereas AA (1), dihomo-γ-linolenic acid (DGLA, 5), and eicosapentaenoic acid (EPA, 6) showed IC50 values of 6.1 ± 2.0, 58 ± 19, and 25 ± 4.0 µM, respectively (N = 4, mean ± SEM). Structure and activity relationships were investigated for the first time using two ω-3 polyunsaturated fatty acids (PUFAs), EPA (6) and eicosatetraenoic acid (ETA, 7), and two ω-6 PUFAs, AA (1) and DGLA (5), to determine their effects on a resting state, activated state, and inactivated state. Steady-state analysis showed that the half inactivation potential was largely hyperpolarized by 10 µM AA (1), while 50 µM DGLA (5), 50 µM EPA (6), and 10 µM ETA (7) led to a slight change. The percentages of the resting state block were 24 ± 1, 22 ± 1, 34 ± 4, and 38 ± 9% in the presence of AA (1), DGLA (5), EPA (6), and ETA (7), respectively, with EPA (6) and ETA (7) exhibiting a greater inhibition than both AA (1) and DGLA (5), and their inhibitions did not increase in the following depolarization pulses. None of the compounds exhibited the use-dependent block. The half recovery times from the inactivated state for the control, AA (1), DGLA (5), EPA (6), and ETA (7) were 7.67 ± 0.33, 34.3 ± 1.10, 15.5 ± 1.10, 10.7 ± 0.31, and 3.59 ± 0.18 ms, respectively, with AA (1) exhibiting a distinctively large effect. Overall, distributed binding to the resting and the inactivated states of Nav would be significant for the inhibition of Nav, which presumably depends on the active structure of each PUFA.


Asunto(s)
Neuroblastoma , Poríferos , Canales de Sodio Activados por Voltaje , Animales , Ratones , Ácido Araquidónico/farmacología , Ácidos Araquidónicos , Neuroblastoma/tratamiento farmacológico
5.
J Nat Prod ; 85(9): 2199-2206, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-35994072

RESUMEN

Tetrodotoxin (TTX, 1) is a potent voltage-gated sodium channel blocker detected in certain marine and terrestrial organisms. We report here a new TTX analogue, 9-epiTTX (2), and a TTX-related compound, Tb-242B (4), isolated from the pufferfish Takifugu flavipterus and Dichotomyctere ocellatus, respectively. NMR analysis suggested that 2 exists as a mixture of hemilactal and 10,8-lactone forms, whereas other reported TTX analogues are commonly present as an equilibrium mixture of hemilactal and 10,7-lactone forms. Compound 2 and TTX were confirmed not to convert to each other by incubation under neutral and acidic conditions at 37 °C for 24 h. Compound 4 was identified as the 9-epimer of Tb-242A (3), previously reported as a possible biosynthetic precursor of TTX. Compound 4 was partially converted to 3 by incubation in a neutral buffer at 37 °C for 7 days, whereas 3 was not converted to 4 under this condition. Compound 2 was detected in several TTX-containing marine animals and a newt. Mice injected with 600 ng of 2 by intraperitoneal injection did not show any adverse symptoms, suggesting that the C-9 configuration in TTX is critical for its biological activity. Based on the structures, 2 and 4 were predicted to be shunt products for TTX biosynthesis.


Asunto(s)
Takifugu , Tetraodontiformes , Tetrodotoxina , Bloqueadores del Canal de Sodio Activado por Voltaje , Animales , Lactonas/química , Lactonas/aislamiento & purificación , Ratones , Tetrodotoxina/química , Tetrodotoxina/aislamiento & purificación , Tetrodotoxina/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/aislamiento & purificación , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología
6.
Biosci Biotechnol Biochem ; 86(10): 1333-1342, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-35918181

RESUMEN

Natural products containing the highly unusual phosphotriester ring are known to be potent serine hydrolase inhibitors. The long-chain bicyclic enol-phosphotriester salinipostins (SPTs) from the marine actinomycete Salinispora have been identified as selective antimalarial agents. A potential regulatory function has been suggested for phosphotriesters based on their structural relationship with actinomycete signaling molecules and the prevalence of spt-like biosynthetic gene clusters across actinomycetes. In this study, we established a mass spectrometry-guided screening method for phosphotriesters focusing on their characteristic fragment ions. Applying this screening method to the SPT producer Salinispora tropica CNB-440, new SPT analogs (4-6) were discovered and their structures were elucidated by spectroscopic analyses. Previously known and herein-identified SPT analogs inhibited the activity of human monoacylglycerol lipase (MAGL), a key serine hydrolase in the endocannabinoid system, in the nanomolar range. Our method could be applied to the screening of phosphotriesters, potential serine hydrolase inhibitors and signaling molecules.


Asunto(s)
Actinobacteria , Antimaláricos , Productos Biológicos , Endocannabinoides , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Espectrometría de Masas , Monoacilglicerol Lipasas/química , Monoacilglicerol Lipasas/genética , Serina
7.
Mar Drugs ; 20(3)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35323466

RESUMEN

Saxitoxin and its analogues, paralytic shellfish toxins (PSTs), are potent and specific voltage-gated sodium channel blockers. These toxins are produced by some species of freshwater cyanobacteria and marine dinoflagellates. We previously identified several biosynthetic intermediates of PSTs, as well as new analogues, from such organisms and proposed the biosynthetic and metabolic pathways of PSTs. In this study, 12ß-deoxygonyautoxin 5 (12α-gonyautoxinol 5 = gonyautoxin 5-12(R)-ol) was identified in the freshwater cyanobacterium, Dolichospermum circinale (TA04), and 12ß-deoxysaxitoxin (12α-saxitoxinol = saxitoxin-12(R)-ol) was identified in the same cyanobacterium and in the marine dinoflagellate Alexandrium pacificum (Group IV) (120518KureAC) for the first time from natural sources. The authentic standards of these compounds and 12α-deoxygonyautoxin 5 (12ß-gonyautoxinol 5 = gonyautoxin 5-12(S)-ol) were prepared by chemical derivatization from the major PSTs, C1/C2, produced in D. circinale (TA04). These standards were used to identify the deoxy analogues by comparing the retention times and MS/MS spectra using high-resolution LC-MS/MS. Biosynthetic or metabolic pathways for these analogues have also been proposed based on their structures. The identification of these compounds supports the α-oriented stereoselective oxidation at C12 in the biosynthetic pathway towards PSTs.


Asunto(s)
Cianobacterias/química , Dinoflagelados/química , Saxitoxina/análogos & derivados , Cianobacterias/metabolismo , Dinoflagelados/metabolismo , Estructura Molecular , Saxitoxina/química , Saxitoxina/aislamiento & purificación , Saxitoxina/metabolismo
8.
Org Biomol Chem ; 19(36): 7894-7902, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34549233

RESUMEN

Domoic acid (1, DA), a member of the natural kainoid family, is a potent agonist of ionotropic glutamate receptors in the central nervous system. The chemical synthesis of DA and its derivatives requires considerable effort to establish a pyrrolidine ring containing three contiguous stereocenters. Recently, a biosynthetic cyclase for DA, DabC, was identified. This enzyme cyclizes the linear precursor of isodomoic acid A (IA) to IA, a bioactive DA analogue. In this study, we developed a bioconversion system to obtain DA analogues from linear substrates prepared by simple chemical synthesis using DabC expressed in Escherichia coli, in vivo. Three IA analogues with various substitutions at the C7'-geranyl terminus were prepared using this system: two minor natural analogues, 7'-methyl-IA (5) and 7'-hydroxy-IA (6), and one new unnatural analogue, 7'-amide-IA (7). In addition, the toxicity of these DA analogues in mice was examined by intracerebroventricular injection. Most of the mice injected with 5 (3 nmol) and 6 (3 nmol) did not show any adverse symptoms, whereas the mice injected with 7 (3 nmol) showed typical symptoms induced by DA (1, 0.7 nmol) and IA (2, 3 nmol). These results suggest that the 7'-carbonyl group in the side chain of IA (2) is crucial for its toxicity. The docking studies of DA, IA (2), 5, 6, and 7 to GluK1 supported these results.


Asunto(s)
Ácido Kaínico/análogos & derivados
9.
Chemistry ; 26(9): 2025-2033, 2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-31769085

RESUMEN

A novel series of C12-keto-type saxitoxin (STX) derivatives bearing an unusual nonhydrated form of the ketone at C12 has been synthesized, and their NaV -inhibitory activity has been evaluated in a cell-based assay as well as whole-cell patch-clamp recording. Among these compounds, 11-benzylidene STX (3 a) showed potent inhibitory activity against neuroblastoma Neuro 2A in both cell-based and electrophysiological analyses, with EC50 and IC50 values of 8.5 and 30.7 nm, respectively. Interestingly, the compound showed potent inhibitory activity against tetrodotoxin-resistant subtype of NaV 1.5, with an IC50 value of 94.1 nm. Derivatives 3 a-d and 3 f showed low recovery rates from NaV 1.2 subtype (ca 45-79 %) compared to natural dcSTX (2), strongly suggesting an irreversible mode of interaction. We propose an interaction model for the C12-keto derivatives with NaV in which the enone moiety in the STX derivatives 3 works as Michael acceptor for the carboxylate of Asp1717 .


Asunto(s)
Saxitoxina/química , Bloqueadores de los Canales de Sodio/síntesis química , Canales de Sodio Activados por Voltaje/metabolismo , Potenciales de Acción/efectos de los fármacos , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular Tumoral , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Técnicas de Placa-Clamp , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Teoría Cuántica , Saxitoxina/metabolismo , Saxitoxina/farmacología , Bloqueadores de los Canales de Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/química , Tetrodotoxina/metabolismo , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/genética
10.
J Nat Prod ; 82(6): 1627-1633, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31117523

RESUMEN

Four kainic acid (KA, 1)-related compounds, 4-hydroxykainic acid (2), allo-4-hydroxykainic acid (3), N-dimethylallyl-l-glutamic acid (4), and N-dimethylallyl- threo-3-hydroxyglutamic acid (5), were isolated from the red alga Digenea simplex. The structures of these compounds were elucidated using spectroscopic methods. Compounds 2 and 3 are possible oxidative metabolites of KA and allo-KA (6), respectively. Compound 4 was recently reported as the biosynthetic precursor of KA, but the absolute configuration of 4 has not been previously determined. Herein, we determined the absolute configuration of 4 as 2( S) using advanced Marfey's method. Compound 5 is similar to N-geranyl-3( R)-hydroxy-l-glutamic acid (8), which was previously identified in a domoic acid (DA)-containing red alga. Compounds 5 and 8 are predicted to be biosynthetic byproducts of the radical-mediated cyclization reaction to form the pyrrolidine rings of KA and DA, respectively. Furthermore, the toxicities of 1-5 in mice were examined by intracerebroventricular injection. The toxicity of 2 was less than that of KA; however, the mice injected with 2 showed symptoms similar to those induced by KA, while 3-5 did not induce typical symptoms of KA in mice.


Asunto(s)
Glutamatos/química , Ácido Glutámico/química , Ácido Kaínico/análogos & derivados , Ácido Kaínico/metabolismo , Pirrolidinas/química , Rhodophyta/química , Animales , Vías Biosintéticas , Ácido Kaínico/química , Ácido Kaínico/toxicidad , Ratones , Estructura Molecular
11.
Mar Drugs ; 17(12)2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31766477

RESUMEN

Paralytic shellfish toxins (PSTs) are the major neurotoxic contaminants of edible bivalves in Japan. Tetrodotoxin (TTX) was recently detected in bivalve shellfish around the world, drawing widespread attention. In Japan, high levels of TTX were reported in the digestive gland of the scallop, Patinopecten yessoensis, in 1993; however, no new data have emerged since then. In this study, we simultaneously analyzed PSTs and TTX in scallops cultured in a bay of east Japan using hydrophilic interaction chromatography (HILIC)-MS/MS. These scallops were temporally collected from April to December 2017. The highest concentration of PSTs (182 µmol/kg, total congeners) in the hepatopancreas was detected in samples collected on May 23, lined to the cell density of the dinoflagellate, Alexandrium tamarense, in seawater around the scallops, whereas the highest concentration of TTX (421 nmol/kg) was detected in samples collected on August 22. Contrary to the previous report, temporal variation of the PSTs and TTX concentrations did not coincide. The highest concentration of TTX in the entire edible tissues was 7.3 µg/kg (23 nmol/kg) in samples obtained on August 22, which was lower than the European Food Safety Authority (EFSA)-proposed threshold, 44 µg TTX equivalents/kg shellfish meat. In addition, 12ß-deoxygonyautoxin 3 was firstly identified in scallops.


Asunto(s)
Dinoflagelados/química , Pectinidae/química , Saxitoxina/análogos & derivados , Alimentos Marinos/análisis , Tetrodotoxina/análisis , Animales , Acuicultura , Bahías , Cromatografía Líquida de Alta Presión , Japón , Saxitoxina/análisis , Saxitoxina/toxicidad , Estaciones del Año , Agua de Mar/microbiología , Intoxicación por Mariscos/etiología , Intoxicación por Mariscos/prevención & control , Espectrometría de Masas en Tándem , Tetrodotoxina/toxicidad , Factores de Tiempo
12.
Chemistry ; 24(28): 7250-7258, 2018 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-29504641

RESUMEN

Tetrodotoxin (TTX, 1) is a potent neurotoxin that is widely found in both terrestrial and marine animals; however, the biosynthetic pathway and genes for TTX have not yet been elucidated. Previously, we proposed that TTX originated from a monoterpene; this hypothesis was based on the structures of cyclic guanidino compounds that are commonly found in toxic newts. However, these compounds have not been detected in marine organisms. Instead, a series of deoxy analogues of TTX were found in toxic marine animals; thus, we further screened for TTX-related compounds in marine animals. Herein, we report seven novel spiro bicyclic guanidino compounds 2-8 that were isolated from the pufferfish Tetraodon biocellatus. In compounds 2-5 and 7-8, a six-membered cyclic guanidino amide is spiro-fused with 2,4-dimethyl cyclohexane, whereas in compound 6, the same cyclic guanidino amide is spiro-fused with 2,3,5-trimethylcyclopentane. Compounds 2-5 and 7-8 have the same carbon skeleton and relative configuration as TTX. Thus, we proposed that compounds 2-8 are biosynthetic intermediates of TTX in marine environments. TTX could be biosynthetically derived from compound 7 via intermediates 2-5 through several oxidations, amide hydrolysis, and formation of the hemiaminal and lactone found in 5,6,11-trideoxyTTX, the major TTX analogue, whereas compounds 6 and 8 might be shunt products. LC-MS analysis confirmed the wide distribution of compounds 2, 3, or both in TTX-containing marine animals, namely pufferfish, crab, octopus, and flatworm, but compounds 2-8 were not detected in newts.


Asunto(s)
Guanidinas/química , Compuestos de Espiro/química , Tetrodotoxina/química , Animales , Carbono , Cromatografía Liquida , Oxidación-Reducción , Espectrometría de Masas en Tándem , Tetraodontiformes
13.
Mar Drugs ; 16(7)2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-29966285

RESUMEN

Pufferfish saxitoxin and tetrodotoxin (TTX) binding protein (PSTBP) is a glycoprotein that we previously isolated from the blood plasma of the pufferfish Takifugu pardalis; this protein was also detected in seven species of the genus Takifugu. We proposed that PSTBP is a carrier protein for TTX in pufferfish; however, PSTBP had not yet been found in genera other than Takifugu. In this study, we investigated the presence of PSTBP-like proteins in the toxic pufferfish Arothron nigropunctatus, A. hispidus, A. manilensis, and Chelonodon patoca. On the basis of ultrafiltration experiments, TTX was found to be present and partially bound to proteins in the plasma of these pufferfish, and Western blot analyses with anti-PSTBP antibody revealed one or two bands per species. The observed decreases in molecular mass following deglycosylation with glycopeptidase F suggest that these positive proteins are glycoproteins. The molecular masses of the deglycosylated proteins detected in the three Arothron species were larger than that of PSTBP in the genus Takifugu, whereas the two bands detected in C. patoca had molecular masses similar to that of tributyltin-binding protein-2 (TBT-bp2). The N-terminal amino acid sequences of 23⁻29 residues of these detected proteins were all homologous with those of PSTBP and TBT-bp2.


Asunto(s)
Proteínas de Peces/sangre , Plasma/metabolismo , Saxitoxina/sangre , Canales de Sodio/sangre , Tetraodontiformes/metabolismo , Tetrodotoxina/sangre , Secuencia de Aminoácidos , Animales , Alineación de Secuencia , Takifugu/metabolismo
14.
J Org Chem ; 82(18): 9595-9618, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28840731

RESUMEN

Structure-activity relationship studies of maitotoxin (MTX), a marine natural product produced by an epiphytic dinoflagellate, were conducted using chemically synthesized model compounds corresponding to the partial structures of MTX. Both enantiomers of the LMNO ring system were synthesized via aldol reaction of the LM ring aldehyde and the NO ring ketone. These fragments were derived from a common cis-fused pyranopyran intermediate prepared through a sequence involving Nozaki-Hiyama-Kishi reaction, intramolecular oxa-Michael addition, and Pummerer rearrangement. The NOPQR(S) ring system, in which the original seven-membered S ring was substituted with a six-membered ring, was also synthesized through the coupling of the QR(S) ring alkyne and the NO ring aldehyde and the construction of the P ring via 1,4-reduction, dehydration, and hydroboration. The inhibitory activities of the synthetic specimens against MTX-induced Ca2+ influx were evaluated. The LMNO ring system and its enantiomer induced 36 and 18% inhibition, respectively, at 300 µM, whereas the NOPQR(S) ring system elicited no inhibitory activity.


Asunto(s)
Aldehídos/farmacología , Calcio/metabolismo , Glioma/metabolismo , Cetonas/farmacología , Toxinas Marinas/antagonistas & inhibidores , Óxido Nítrico/farmacología , Oxocinas/antagonistas & inhibidores , Piranos/farmacología , Aldehídos/química , Animales , Relación Dosis-Respuesta a Droga , Cetonas/química , Toxinas Marinas/química , Toxinas Marinas/farmacología , Conformación Molecular , Óxido Nítrico/química , Oxocinas/química , Oxocinas/farmacología , Piranos/síntesis química , Piranos/química , Ratas , Estereoisomerismo
15.
Bioorg Med Chem Lett ; 27(5): 1247-1251, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28143690

RESUMEN

Crambescin B carboxylic acid, a synthetic analog of crambescin B, was recently found to inhibit the voltage-sensitive sodium channels (VSSC) in a cell-based assay using neuroblastoma Neuro 2A cells. In the present study, whole-cell patch-clamp recordings were conducted with three heterologously expressed VSSC subtypes, Nav1.2, Nav1.6 and Nav1.7, in a human embryonic kidney cell line HEK293T to further characterize the inhibition of VSSC by crambescin B carboxylic acid. Contrary to the previous observation, crambescin B carboxylic acid did not inhibit peak current evoked by depolarization from the holding potential of -100mV to the test potential of -10mV in the absence or presence of veratridine (VTD). In the presence of VTD, however, crambescin B carboxylic acid diminished VTD-induced sustained and tail currents through the three VSSC subtypes in a dose-dependent manner, whereas TTX inhibited both the peak current and the VTD-induced sustained and tail currents through all subtypes of VSSC tested. We thus concluded that crambescin B carboxylic acid does not block VSSC in a similar manner to TTX but modulate the action of VTD, thereby causing an apparent block of VSSC in the cell-based assay.


Asunto(s)
Pirimidinas/farmacología , Compuestos de Espiro/farmacología , Veratridina/química , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Pirimidinas/química , Compuestos de Espiro/química , Veratridina/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología
16.
Biosci Biotechnol Biochem ; 81(2): 222-225, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27760495

RESUMEN

A new sarasinoside congener (sarasinoside M2) and known sarasinoside B1 were obtained from a marine sponge. Sarasinoside M2 was suggested to have the same aglycon as sarasinoside M although the internal glucose in its sugar moiety is replaced by xylose. Sarasinosides B1 and M2 showed moderate cytotoxicity (approximate IC50 5-18 µM) toward Neuro-2a and HepG2 cell lines.


Asunto(s)
Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Glicósidos/aislamiento & purificación , Glicósidos/farmacología , Poríferos/química , Animales , Antineoplásicos/química , Glicósidos/química , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Melanesia , Ratones
17.
Angew Chem Int Ed Engl ; 56(19): 5327-5331, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28370934

RESUMEN

Saxitoxin (STX) and its analogues are potent voltage-gated sodium channel blockers biosynthesized by freshwater cyanobacteria and marine dinoflagellates. We previously identified genetically predicted biosynthetic intermediates of STX at early stages, Int-A' and Int-C'2, in these microorganisms. However, the mechanism to form the tricyclic skeleton of STX was unknown. To solve this problem, we screened for unidentified intermediates by analyzing the results from previous incorporation experiments with 15 N-labeled Int-C'2. The presence of monohydroxy-Int-C'2 and possibly Int-E' was suggested, and 11-hydroxy-Int-C'2 and Int-E' were identified from synthesized standards and LC-MS. Furthermore, we observed that the hydroxy group at C11 of 11-hydroxy-Int-C'2 was slowly replaced by CD3 O in CD3 OD. Based on this characteristic reactivity, we propose a possible mechanism to form the tricyclic skeleton of STX via a bicyclic intermediate from 11-hydroxy-Int-C'2.


Asunto(s)
Cianobacterias/metabolismo , Dinoflagelados/metabolismo , Saxitoxina/biosíntesis , Bloqueadores del Canal de Sodio Activado por Voltaje/metabolismo , Conformación Molecular , Saxitoxina/química , Bloqueadores del Canal de Sodio Activado por Voltaje/química
18.
J Org Chem ; 81(18): 8234-52, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27529493

RESUMEN

This paper describes a concise synthesis of six- to eight-membered α,α'-substituted cyclic ethers by exploiting diastereoselective ring-closing metathesis (RCM) of 1,4-pentadien-3-yl ether derivatives. The RCM precursors could be efficiently prepared via a vinylation of the corresponding α-acetoxy ether derivatives using divinylzinc. Diastereoselective RCM of 1,4-pentadien-3-yl ether derivatives afforded a series of six- to eight-membered α,α'-substituted cyclic ethers with moderate to good diastereoselectivity. The stereochemical consequence of the diastereoselective RCM appeared to be dependent on the structure of the ring being forged. The diastereoselectivity of six- and seven-membered cyclic ethers appeared to be largely under kinetic control irrespective of the catalyst reactivity, whereas that of an eight-membered cyclic ether could be controlled by the catalyst reactivity. Finally, the diastereoselective RCM chemistry was applied to the synthesis of a biotin-tagged photoactivatable derivative of gambierol.

19.
Bioorg Med Chem Lett ; 26(13): 2992-2996, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27231127

RESUMEN

Okadaic acid (OA), a product of dinoflagellate Prorocentrum spp., is transformed into 7-O-acyl OA in various bivalve species. The structural transformation proceeds enzymatically in vitro in the presence of the microsomal fraction from the digestive gland of bivalves. We have been using LC-MS/MS to identify OA-transforming enzymes by detecting 7-O-acyl OA, also known as dinophysistoxin 3 (DTX3). However, an alternative assay for DTX3 is required because the OA-transforming enzyme is a membrane protein, and surfactants for solubilizing membrane proteins decrease the sensitivity of LC-MS/MS. The present study examined saturated fatty acyl CoAs with a carbon chain length of 10 (decanoyl), 12 (dodecanoyl), 14 (tetradecanoyl), 16 (hexadecanoyl) and 18 (octadecanoyl) as the substrate for the in vitro acylation reaction. Saturated fatty acyl CoAs with a carbon chain length of 14, 16 and 18 exhibited higher yields than those with a carbon chain length of 10 or 12. Acyl CoAs with carbon chain lengths from 14 to 18 and containing either a diene unit, an alkyne unit, or an azide unit in the carbon chain were synthesized and shown to provide the corresponding DTX3 with a yield comparable to that of hexadecanoyl CoA. The three functional units can be conjugated with fluorescent reagents and are applicable to the development of a novel assay for DTX3.


Asunto(s)
Acilcoenzima A/química , Ácidos Grasos/química , Ácido Ocadaico/química , Piranos/química , Acilcoenzima A/síntesis química , Acilcoenzima A/metabolismo , Acilación , Animales , Química Clic , Ácidos Grasos/metabolismo , Colorantes Fluorescentes/química , Microsomas/metabolismo , Ácido Ocadaico/metabolismo , Pectinidae/metabolismo , Piranos/síntesis química , Piranos/metabolismo , Quinoxalinas/química , Relación Estructura-Actividad , Triazoles/química
20.
Angew Chem Int Ed Engl ; 55(30): 8728-31, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27248052

RESUMEN

The biosynthesis of tetrodotoxin (TTX), a potent neurotoxin consisting of a 2,4-dioxaadamantane skeleton and a guanidine moiety, is an unsolved problem in natural product chemistry. Recently, the first C5-C10 directly bonded TTX analogue, 4,9-anhydro-10-hemiketal-5-deoxyTTX, was obtained from toxic newts and its carbon skeleton suggested a possible monoterpene origin. On the basis of this hypothesis, screening of predicted biosynthetic intermediates of TTX was performed using two MS-guided methods. Herein, five novel cyclic guanidine compounds from toxic newts are reported which commonly contain a cis-fused bicyclic structure including a six-membered cyclic guanidine. These structures could be biosynthetically derived from geranyl guanidine through oxidation, cyclization, and/or isomerization steps. LC-MS analysis confirmed the widespread distribution of the five novel compounds in toxic newt species. These results support the hypothesis that TTX is derived from a monoterpene.


Asunto(s)
Guanidinas/química , Monoterpenos/química , Salamandridae/metabolismo , Tetrodotoxina/análogos & derivados , Animales , Compuestos Bicíclicos con Puentes/química , Cromatografía Líquida de Alta Presión , Ciclización , Guanidinas/metabolismo , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Monoterpenos/metabolismo , Oxidación-Reducción , Estereoisomerismo , Tetrodotoxina/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA