Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ann Rheum Dis ; 76(3): 625-628, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28093418

RESUMEN

OBJECTIVES: The aetiology of primary Sjögren's syndrome (pSS), also referred to as autoimmune epithelitis, is incompletely understood but includes an epigenetic contribution. Accordingly, the aim of this study was to investigate DNA methylation in salivary gland epithelial cells (SGEC), and to compare results with those publicly available from pSS B and T cells. METHODS: Long-term cultured SGEC were selected to conduct an epigenome-wide association study (EWAS) in patients with pSS with comparison to controls using the HumanMethylation 450 K array from Illumina. RESULTS: The analysis of differentially methylated CpG (DMC) uncovered 4662 positions corresponding to 2560 genes, and 575 genes with two or more DMC sites (DMCs), in SGEC as compared with controls. Further analysis highlighted an important proportion of interferon-regulated genes (61%), the calcium pathway (hypomethylated) and the Wnt pathway (hypermethylated). When comparing SGEC with pSS T and/or B cell results, an important overlap was observed with respect to differentially methylated genes (38.8%) and pSS risk factors (71.4%), although such assertion was not true when comparing DMCs. CONCLUSIONS: This study conducted in SGEC emphasises the role of DNA methylation in pSS pathogenesis and supports the necessity to conduct pure cell analysis for future EWAS studies when analysing salivary glands from patients with pSS.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Síndrome de Sjögren/genética , Adulto , Anciano , Linfocitos B , Calcio/metabolismo , Células Cultivadas , Islas de CpG , Células Epiteliales , Regulación de la Expresión Génica , Humanos , Interferones/genética , Persona de Mediana Edad , Glándulas Salivales/citología , Linfocitos T , Factores de Tiempo , Vía de Señalización Wnt/genética , Adulto Joven
2.
Front Immunol ; 6: 437, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26379672

RESUMEN

Recent advances in genetics have highlighted several regions and candidate genes associated with primary Sjögren's syndrome (SS), a systemic autoimmune epithelitis that combines exocrine gland dysfunctions, and focal lymphocytic infiltrations. In addition to genetic factors, it is now clear that epigenetic deregulations are present during SS and restricted to specific cell type subsets, such as lymphocytes and salivary gland epithelial cells. In this study, 72 single nucleotide polymorphisms (SNPs) associated with 43 SS gene risk factors were selected from publicly available and peer reviewed literature for further in silico analysis. SS risk variant location was tested revealing a broad distribution in coding sequences (5.6%), intronic sequences (55.6%), upstream/downstream genic regions (30.5%), and intergenic regions (8.3%). Moreover, a significant enrichment of regulatory motifs (promoter, enhancer, insulator, DNAse peak, and expression quantitative trait loci) characterizes SS risk variants (94.4%). Next, screening SNPs in high linkage disequilibrium (r (2) ≥ 0.8 in Caucasians) revealed 645 new variants including 5 SNPs with missense mutations, and indicated an enrichment of transcriptionally active motifs according to the cell type (B cells > monocytes > T cells ≫ A549). Finally, we looked at SS risk variants for histone markers in B cells (GM12878), monocytes (CD14(+)) and epithelial cells (A548). Active histone markers were associated with SS risk variants at both promoters and enhancers in B cells, and within enhancers in monocytes. In conclusion and based on the obtained in silico results that need further confirmation, associations were observed between SS genetic risk factors and epigenetic factors and these associations predominate in B cells, such as those observed at the FAM167A-BLK locus.

3.
Front Genet ; 5: 71, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24765104

RESUMEN

Sjögren's syndrome (SS) is a chronic autoimmune epithelitis that combines exocrine gland dysfunctions and lymphocytic infiltrations. While the pathogenesis of SS remains unclear, its etiology is multifunctional and includes a combination of genetic predispositions, environmental factors, and epigenetic factors. Recently, interest has grown in the involvement of epigenetics in autoimmune diseases. Epigenetics is defined as changes in gene expression, that are inheritable and that do not entail changes in the DNA sequence. In SS, several epigenetic mechanisms are defective including DNA demethylation that predominates in epithelial cells, an abnormal expression of microRNAs, and abnormal chromatin positioning-associated with autoantibody production. Last but not least, epigenetic modifications are reversible as observed in minor salivary glands from SS patients after B cell depletion using rituximab. Thus epigenetic findings in SS open new perspectives for therapeutic approaches as well as the possible identification of new biomarkers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA