Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Exp Physiol ; 107(11): 1265-1282, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36029041

RESUMEN

NEW FINDINGS: What is the central question of this study? What is the effect of an elevated carboxyhaemoglobin (COHb) concentration following carbon monoxide inhalation on the maximal lactate steady state (MLSS) in humans and is this effect dependent on aerobic fitness? What is the main finding and its importance? An elevated COHb concentration intensified physiological responses to exercise at the MLSS - including heart rate, ventilation and peripheral fatigue - in general and reduced the MLSS (i.e., destabilized the blood lactate concentration) in trained but not untrained males and females. ABSTRACT: This study investigated whether a lower effective [Hb], induced by carbon monoxide (CO) inhalation, reduces the peak oxygen uptake ( V ̇ O 2 peak ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ ) and the maximal lactate steady state (MLSS) and whether training status explains individual variation in these impairments. Healthy young participants completed two ramp incremental tests (n = 20, 10 female) and two trials at MLSS (n = 16, eight female) following CO rebreathe tests and sham procedures (SHAM) in random orders. All fitness variables were normalized to fat-free mass (FFM) to account for sex-related differences in body composition, and males and females were matched for aerobic fitness. The V ̇ O 2 peak ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ (mean (SD): -4.2 (3.7)%), peak power output (PPO) (-3.3 (2.2)%) and respiratory compensation point (RCP) (-6.3 (4.5)%) were reduced in CO compared with SHAM (P < 0.001 for all), but the gas exchange threshold (-3.3 (7.1)%) was not (P = 0.077). Decreases in V ̇ O 2 peak ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ (r = -0.45; P = 0.047) and PPO (r = -0.49; P = 0.029) in CO were correlated with baseline aerobic fitness. Compared to SHAM, physiological and perceptual indicators of exercise-related stress were exacerbated by CO while cycling at MLSS. Notably, the mean blood lactate concentration ([La]) increased (i.e., Δ[La] >1.0 mM) between 10 min (5.5 (1.4) mM) and 30 min (6.8 (1.3) mM; P = 0.026) in CO, with 9/16 participants classified as unstable. These unstable participants had a higher V ̇ O 2 peak ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}{\rm{peak}}}$ (66.2 (8.5) vs. 56.4 (8.8) ml kg FFM-1  min-1 , P = 0.042) and V ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ at MLSS (55.8 (7.0) vs. 44.3 (7.0) ml kg FFM-1  min-1 , P = 0.006) compared to the stable group. In conclusion, a reduced O2 -carrying capacity decreased maximal and submaximal exercise performance, with higher aerobic fitness associated with greater impairments in both.


Asunto(s)
Ácido Láctico , Consumo de Oxígeno , Femenino , Humanos , Masculino , Monóxido de Carbono , Prueba de Esfuerzo , Consumo de Oxígeno/fisiología
2.
Int J Sport Nutr Exerc Metab ; 31(6): 466-474, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34453013

RESUMEN

Supplementing postexercise carbohydrate (CHO) intake with protein has been suggested to enhance recovery from endurance exercise. The aim of this study was to investigate whether adding protein to the recovery drink can improve 24-hr recovery when CHO intake is suboptimal. In a double-blind crossover design, 12 trained men performed three 2-day trials consisting of constant-load exercise to reduce glycogen on Day 1, followed by ingestion of a CHO drink (1.2 g·kg-1·2 hr-1) either without or with added whey protein concentrate (CHO + PRO) or whey protein hydrolysate (CHO + PROH) (0.3 g·kg-1·2 hr-1). Arterialized blood glucose and insulin responses were analyzed for 2 hr postingestion. Time-trial performance was measured the next day after another bout of glycogen-reducing exercise. The 30-min time-trial performance did not differ between the three trials (M ± SD, 401 ± 75, 411 ± 80, 404 ± 58 kJ in CHO, CHO + PRO, and CHO + PROH, respectively, p = .83). No significant differences were found in glucose disposal (area under the curve [AUC]) between the postexercise conditions (364 ± 107, 341 ± 76, and 330 ± 147, mmol·L-1·2 hr-1, respectively). Insulin AUC was lower in CHO (18.1 ± 7.7 nmol·L-1·2 hr-1) compared with CHO + PRO and CHO + PROH (24.6 ± 12.4 vs. 24.5 ± 10.6, p = .036 and .015). No difference in insulin AUC was found between CHO + PRO and CHO + PROH. Despite a higher acute insulin response, adding protein to a CHO-based recovery drink after a prolonged, high-intensity exercise bout did not change next-day exercise capacity when overall 24-hr macronutrient and caloric intake was controlled.


Asunto(s)
Carbohidratos de la Dieta , Músculo Esquelético , Glucemia , Método Doble Ciego , Ingestión de Alimentos , Ejercicio Físico , Glucógeno , Humanos , Insulina , Masculino , Resistencia Física
3.
Proteomics ; 14(15): 1713-23, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24841998

RESUMEN

Serum protein glycosylation is known to be affected by pathological conditions, including cancer and inflammatory diseases. Pancreatic cancer patients would benefit from early diagnosis, as the disease is often detected in an advanced stage and has poor prognosis. Searching for changes in serum protein site-specific glycosylation could reveal novel glycoprotein biomarkers. We used Sambucus nigra lectin affinity chromatography to enrich α-2,6 sialylated tryptic N-glycopeptides from albumin-depleted sera of pancreatic cancer patients, acute pancreatitis patients, and healthy individuals, and compared their relative abundance using ultra performance LC-MS. Relative quantitation was done using the spectrum processing software MZmine. Identification was performed on the web-based tool GlycopeptideID, developed for in silico analysis of intact N-glycopeptides. Seventeen high-abundance serum proteins, mainly acute-phase proteins, and immunoglobulins, with total 27 N-glycosylation sites, and 62 glycoforms, were identified. Pancreatitis patient sera contained 38, and pancreatic cancer patients sera contained 13 glycoform changes with statistical significance (p < 0.05). In pancreatitis, up to tenfold changes were found in some glycoforms, and in pancreatic cancer, threefold. Analysis showed that the changes often concerned one or two, but not all, N-glycosylation sites in a specific glycoprotein. In conclusion, the analysis shows that pancreatic cancer, and acute pancreatitis are associated with changes in concentrations of intact sialylated N-glycopeptides derived from acute-phase proteins, and immunoglobulins, and that changes are site specific.


Asunto(s)
Glicopéptidos/sangre , Glicopéptidos/química , Neoplasias Pancreáticas/sangre , Pancreatitis/sangre , Estudios de Casos y Controles , Humanos , Ácido N-Acetilneuramínico
4.
Artículo en Inglés | MEDLINE | ID: mdl-39047300

RESUMEN

Blood properties influence aerobic exercise performance. While vascular volumes and hemoglobin mass (Hbmass) are elevated in trained individuals, evidence of sex differences in vascular volumes is equivocal due to inadequate matching of aerobic fitness between males and females. This cross-sectional study aimed to compare hematological values normalized to body mass (BM) and fat-free mass (FFM) between males (n=45) and females (n=34) matched for aerobic fitness (V̇O2max) normalized to FFM (mL∙kg FFM-1∙min-1). Data included body composition measured by dual-energy x-ray absorptiometry (DXA), V̇O2max from an incremental test, and hematological values derived from a CO rebreathe test. Fat mass was unrelated to blood volume (BV; R2 = 0.02, p=0.26) and Hbmass (R2=0.03, p=0.16), while FFM was the strongest predictor of both (R2=0.75 and R2=0.83, respectively, P<0.001). Females exhibited higher FFM-normalized BV (+4%, P<0.05) and plasma volume (PV) (+14%, P<0.001) and lower red blood cell volume (RBCV) (-8%, P<0.001) and Hbmass (-8%, P<0.001) compared to males. Positive correlations between aerobic fitness and relative Hbmass and BV were observed in both sexes when normalized to BM and FFM (0.48

5.
J Appl Physiol (1985) ; 137(1): 10-22, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38779761

RESUMEN

Critical power (CP) represents an important threshold for exercise performance and fatiguability. We sought to determine the extent to which sex, hemoglobin mass (Hbmass), and skeletal muscle characteristics influence CP. Before CP determination (i.e., 3-5 constant work rate trials to task failure), Hbmass and skeletal muscle oxidative capacity (τ) were measured and vastus lateralis (VL) muscle biopsy samples were collected from 12 females and 12 males matched for aerobic fitness relative to fat-free mass (FFM) [means (SD); V̇o2max: 59.2 (7.7) vs. 59.5 (7.1) mL·kg·FFM-1·min-1, respectively]. Males had a significantly greater CP than females in absolute units [225 (28) vs. 170 (43) W; P = 0.001] but not relative to body mass [3.0 (0.6) vs. 2.7 (0.6) W·kg·BM-1; P = 0.267] or FFM [3.6 (0.7) vs. 3.7 (0.8) W·kg·FFM-1; P = 0.622]. Males had significantly greater W' (P ≤ 0.030) and greater Hbmass (P ≤ 0.016) than females, regardless of the normalization approach; however, there were no differences in mitochondrial protein content (P = 0.375), τ (P = 0.603), or MHC I proportionality (P = 0.574) between males and females. Whether it was expressed in absolute or relative units, CP was positively correlated with Hbmass (0.444 ≤ r ≤ 0.695; P < 0.05), mitochondrial protein content (0.413 ≤ r ≤ 0.708; P < 0.05), and MHC I proportionality (0.506 ≤ r ≤ 0.585; P < 0.05), and negatively correlated with τ when expressed in relative units only (-0.588 ≤ r ≤ -0.527; P < 0.05). Overall, CP was independent of sex, but variability in CP was related to Hbmass and skeletal muscle characteristics. The extent to which manipulations in these physiological parameters influence CP warrants further investigation to better understand the factors underpinning CP.NEW & NOTEWORTHY In males and females matched for aerobic fitness [maximal oxygen uptake normalized to fat-free mass (FFM)], absolute critical power (CP) was greater in males, but relative CP (per kilogram body mass or FFM) was similar between sexes. CP correlated with hemoglobin mass, mitochondrial protein content, myosin heavy chain type I proportion, and skeletal muscle oxidative capacity. These findings demonstrate the importance of matching sexes for aerobic fitness, but further experiments are needed to determine causality.


Asunto(s)
Hemoglobinas , Músculo Esquelético , Consumo de Oxígeno , Humanos , Masculino , Femenino , Hemoglobinas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Adulto , Consumo de Oxígeno/fisiología , Adulto Joven , Ejercicio Físico/fisiología , Caracteres Sexuales , Ciclismo/fisiología , Factores Sexuales
6.
Nutrients ; 14(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36079744

RESUMEN

Dietary calcium intake is a modifiable, lifestyle factor that can affect bone health and the risk of fracture. The diurnal rhythm of bone remodelling suggests nocturnal dietary intervention to be most effective. This study investigated the effect of daily, bed-time ingestion of a calcium-fortified, milk-derived protein matrix (MBPM) or control (CON), for 24 weeks, on serum biomarkers of bone resorption (C-terminal telopeptide of type I collagen, CTX) and formation (serum pro-collagen type 1 N-terminal propeptide, P1NP), and site-specific aerial bone mineral density (BMD), trabecular bone score (TBS), in postmenopausal women with osteopenia. The MBPM supplement increased mean daily energy, protein, and calcium intake, by 11, 30, and 107%, respectively. 24-week supplementation with MBPM decreased CTX by 23%, from 0.547 (0.107) to 0.416 (0.087) ng/mL (p < 0.001) and P1NP by 17%, from 60.6 (9.1) to 49.7 (7.2) µg/L (p < 0.001). Compared to CON, MBPM induced a significantly greater reduction in serum CTX (mean (CI95%); −9 (8.6) vs. −23 (8.5)%, p = 0.025 but not P1NP −19 (8.8) vs. −17 (5.2)%, p = 0.802). No significant change in TBS, AP spine or dual femur aerial BMD was observed for CON or MBPM. This study demonstrates the potential benefit of bed-time ingestion of a calcium-fortified, milk-based protein matrix on homeostatic bone remodelling but no resultant treatment effect on site-specific BMD in postmenopausal women with osteopenia.


Asunto(s)
Enfermedades Óseas Metabólicas , Osteoporosis Posmenopáusica , Animales , Biomarcadores , Densidad Ósea , Remodelación Ósea , Calcio/farmacología , Calcio de la Dieta/farmacología , Colágeno Tipo I , Ingestión de Alimentos , Femenino , Humanos , Leche , Proteínas de la Leche/farmacología , Posmenopausia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA