RESUMEN
The wetting state of surfaces can be rendered to a highly hydrophobic state by the deposition of hydrophilic gas phase synthesized Ag nanoparticles (NPs). The aging of Ag NPs leads to an increase in their size, which is also associated with the presence of Ag adatoms on the surface between the NPs that have a strong effect on the wetting processes. Furthermore, surface airborne hydrocarbons were removed by UV-ozone treatment, providing deeper insight into the apparent mobility of the NPs on different surfaces and their subsequent ripening and aging. In addition, the UV-ozone treatment revealed the presence of adatoms during the magnetron sputtering process. This surface treatment lowers the initial contact angle of the substrates and facilitates the mobility of Ag NPs and adatoms on the surface of substrates. Adatoms co-deposited on clean high surface energy substrates will nucleate on Ag NPs that will remain closely spherical and preserve the pinning effect due to the water nanomeniscus. If the adatoms are co-deposited on a UV-ozone cleaned low surface energy substrate, their mobility is restricted, and they will nucleate in two-dimensional islands and/or nanoclusters on the surface instead of connecting to existing Ag NPs. This growth results in a rough surface without overhangs, where the wetting state is reversed from hydrophobic to hydrophilic. Finally, different material surfaces of transmission electron microscopy grids revealed strong differences in the sticking coefficient for the Ag NPs, suggesting another factor that can strongly affect their wetting properties.
RESUMEN
Germanane (GeH), a germanium analogue of graphane, has recently attracted considerable interest because its remarkable combination of properties makes it an extremely suitable candidate to be used as 2D material for field effect devices, photovoltaics, and photocatalysis. Up to now, the synthesis of GeH has been conducted by substituting Ca by H in a ß-CaGe2 layered Zintl phase through topochemical deintercalation in aqueous HCl. This reaction is generally slow and takes place over 6 to 14â days. The new and facile protocol presented here allows to synthesize GeH at room temperature in a significantly shorter time (a few minutes), which renders this method highly attractive for technological applications. The GeH produced with this method is highly pure and has a band gap (Eg ) close to 1.4â eV, a lower value than that reported for germanane synthesized using HCl, which is promising for incorporation of GeH in solar cells.
RESUMEN
Hafnia-based thin films are a favoured candidate for the integration of robust ferroelectricity at the nanoscale into next-generation memory and logic devices. This is because their ferroelectric polarization becomes more robust as the size is reduced, exposing a type of ferroelectricity whose mechanism still remains to be understood. Thin films with increased crystal quality are therefore needed. We report the epitaxial growth of Hf0.5Zr0.5O2 thin films on (001)-oriented La0.7Sr0.3MnO3/SrTiO3 substrates. The films, which are under epitaxial compressive strain and predominantly (111)-oriented, display large ferroelectric polarization values up to 34 µC cm-2 and do not need wake-up cycling. Structural characterization reveals a rhombohedral phase, different from the commonly reported polar orthorhombic phase. This finding, in conjunction with density functional theory calculations, allows us to propose a compelling model for the formation of the ferroelectric phase. In addition, these results point towards thin films of simple oxides as a vastly unexplored class of nanoscale ferroelectrics.
RESUMEN
Magnesium thin films covered with a layer of Pd absorb hydrogen at much higher pressures than bulk Mg. Such an effect was originally explained as a consequence of elastic clamping on Mg by the capping Pd layer. An alternative interpretation later suggested that the pressure increase could originate from simple alloying between Mg and Pd. Here we resolve this controversy by measuring the hydrogenation and dehydrogenation isotherms of Mg-Pd thin film alloys over a wide range of compositions. Our results disentangle the effects of elastic clamping and alloying and highlight the role of plastic deformations.
RESUMEN
Phase-change Ge2Sb2Te5 nanoparticles (NPs), that are promising for next-generation phase-change memory and other emerging optoelectronic applications, have been deposited on graphene support layers and analyzed using advanced transmission electron microscopy techniques allowing high quality atomic resolution imaging at accelerating voltages as low as 40 kV. The deposition results in about three times higher NP coverage on suspended graphene than on graphene containing an amorphous background support. We attribute this to the variation in surface energy of suspended and supported graphene, indicating that the former harvests NPs more effectively. Hydrocarbon contamination on the graphene profoundly enhances the mobility of the NP atoms and after prolonged (weeks) exposure to air resulted in more severe oxidation and spreading of NPs on the suspended graphene than on supported graphene because the network of hydrocarbons develops more extensively on the suspended rather than on the supported graphene. Due to this oxidation, GeO x shells are formed out of NPs having a uniform composition initially. The present work provides new insights into the structure and stability of phase-change NPs, graphene and their combinations.
RESUMEN
The alloys (GeTe)x(AgSbTe2)100-x, commonly known as TAGS-x, are among the best performing p-type thermoelectric materials for the composition range 80 ≤ x ≤ 90 and in the temperature range 200-500 °C. They adopt a rhombohedrally distorted rocksalt structure at room temperature and are reported to undergo a reversible phase transition to a cubic structure at â¼250 °C. However, we show that, for the optimal x = 85 composition (TAGS-85), both the structural and thermoelectric properties are highly sensitive to the initial synthesis method employed. Single-phase rhombohedral samples exhibit the best thermoelectric properties but can only be obtained after an annealing step at 600 °C during initial cooling from the melt. Under faster cooling conditions, the samples obtained are inhomogeneous, containing multiple rhombohedral phases with a range of lattice parameters and exhibiting inferior thermoelectric properties. We also find that when the room-temperature rhombohedral phase is heated, an intermediate trigonal structure containing ordered cation vacancy layers is formed at â¼200 °C, driven by the spontaneous precipitation of argyrodite-type Ag8GeTe6 which alters the stoichiometry of the TAGS-85 matrix. The rhombohedral and trigonal phases of TAGS-85 coexist up to 380 °C, above which a single cubic phase is obtained and the Ag8GeTe6 precipitates redissolve into the matrix. On subsequent cooling a mixture of rhombohedral, trigonal, and Ag8GeTe6 phases is again obtained. Initially single-phase samples exhibit thermoelectric power factors of up to 0.0035 W m-1 K-2 at 500 °C, a value that is maintained on subsequent thermal cycling and which represents the highest power factor yet reported for undoped TAGS-85. Therefore, control over the structural homogeneity of TAGS-85 as demonstrated here is essential in order to optimize the thermoelectric performance.
RESUMEN
Core-shell structured Fe nanoparticles (NPs) produced by high pressure magnetron sputtering gas condensation were studied using transmission electron microscopy (TEM) techniques, electron diffraction, electron energy-loss spectroscopy (EELS), tomographic reconstruction, and Wulff shape construction analysis. The core-shell structure, which is composed of an Fe core surrounded by a maghemite (γ-Fe2O3) and/or magnetite (Fe3O4) shell, was confirmed by fast Fourier transform (FFT) analysis combined with EELS. It was found that the particle size and shape strongly depend on the gas environment. Moreover, extensive analysis showed that NPs with a size between 10-20 nm possess a truncated cubic morphology, which is confined by the 6 {100} planes that are truncated by the 12 {110} planes at different degrees. For NPs larger than 20 nm, the rhombic dodecahedron defined by the 12 {110} planes is the predominant crystal shape, while truncated rhombic dodecahedrons, as well as non-truncated and truncated cubic NPs, were also observed. The NPs without truncation showed a characteristic inward relaxation indicating that besides thermodynamics kinetics also plays a crucial role during particle growth.
RESUMEN
Sb2Te3 films are used for studying the epitaxial registry between two-dimensionally bonded (2D) materials and three-dimensional bonded (3D) substrates. In contrast to the growth of 3D materials, it is found that the formation of coincidence lattices between Sb2Te3 and Si(111) depends on the geometry and dangling bonds of the reconstructed substrate surface. Furthermore, we show that the epitaxial registry can be influenced by controlling the Si(111) surface reconstruction and confirm the results for ultrathin films.
RESUMEN
We report for the first time the intercalation of low-molecular-weight hyperbranched polyethyleneimine (PEI) into graphite oxide (GO) for the facile, bulk synthesis of novel graphene-based hybrid (GO-PEI) materials exhibiting tailored interlayer galleries. The size of the intercalant as well as the loading in GO were systematically investigated to determine their contribution to the basal spacing of the resulting materials. Powder X-ray diffraction measurements demonstrated the generation of constrained hybrid systems along the c axis that exhibit considerably increased interlayer distances compared with the starting, pristine GO. The results of X-ray photoelectron and FTIR studies are consistent with a "grafting-to" process of the intercalated PEI with the oxygen functional groups present along the GO framework. Furthermore, it was found that a great number of the nitrogen-containing groups in PEI still remain available within the newly formed, confined micro-environment of intercalated GO galleries. The increased surface area of the GO-PEI hybrids in conjunction with the remaining available active groups of intercalated PEI render the synthesised hybrids very attractive candidates as nanostructured adsorbents.
RESUMEN
The reversible amorphous-crystalline phase change in a chalcogenide material, specifically the Se1-xTex alloy, has been investigated for the first time using ultrafast differential scanning calorimetry. Heating rates and cooling rates up to 5000 K/s were used. Repeated reversible amorphous-crystalline phase switching was achieved by consecutively melting, melt-quenching, and recrystallizing upon heating. Using a well-conditioned method, the composition of a single sample was allowed to shift slowly from 15 at. %Te to 60 at. %Te, eliminating sample-to-sample variability from the measurements. Using Energy Dispersive X-ray Spectroscopy composition analysis, the onset of melting for different Te-concentrations was confirmed to coincide with the literature solidus line, validating the use of the onset of melting Tm as a composition indicator. The glass transition Tg and crystallization temperature Tc could be determined accurately, allowing the construction of extended phase diagrams. It was found that Tm and Tg increase (but Tg/Tm decrease slightly) with increasing Te-concentration. Contrarily, the Tc decreases substantially, indicating that the amorphous phase becomes progressively unfavorable. This coincides well with the observation that the critical quench rate to prevent crystallization increases about three orders of magnitude with increasing Te concentration. Due to the employment of a large range of heating rates, non-Arrhenius behavior was detected, indicating that the undercooled liquid SeTe is a fragile liquid. The activation energy of crystallization was found to increase 0.5-0.6 eV when the Te concentration increases from 15 to 30 at. % Te, but it ceases to increase when approaching 50 at. % Te.
RESUMEN
A family of solids including crystalline phase change materials such as GeTe and Sb2 Te3 , topological insulators like Bi2 Se3, and halide perovskites such as CsPbI3 possesses an unconventional property portfolio that seems incompatible with ionic, metallic, or covalent bonding. Instead, evidence is found for a bonding mechanism characterized by half-filled p-bands and a competition between electron localization and delocalization. Different bonding concepts have recently been suggested based on quantum chemical bonding descriptors which either define the bonds in these solids as electron-deficient (metavalent) or electron-rich (hypervalent). This disagreement raises concerns about the accuracy of quantum-chemical bonding descriptors is showed. Here independent of the approach chosen, electron-deficient bonds govern the materials mentioned above is showed. A detailed analysis of bonding in electron-rich XeF2 and electron-deficient GeTe shows that in both cases p-electrons govern bonding, while s-electrons only play a minor role. Yet, the properties of the electron-deficient crystals are very different from molecular crystals of electron-rich XeF2 or electron-deficient B2 H6 . The unique properties of phase change materials and related solids can be attributed to an extended system of half-filled bonds, providing further arguments as to why a distinct nomenclature such as metavalent bonding is adequate and appropriate for these solids.
RESUMEN
Metal halide perovskites, particularly using tin and lead as bivalent cations, are well known for their synthetic versatility and ion mobility. These materials possess intriguing ionic properties that allow the formation of 2D Ruddlesden-Popper (RP) and 3D metal halide perovskite nanocrystals (NCs) under similar synthetic conditions. We studied the synthesis mechanism of oleylammonium-based Sn and Pb bromide perovskites 2D Ruddlesden-Popper (RP) in comparison with the 3D CsPbBr3 and CsSnBr3 NCs. Using experimental techniques in combination with theoretical calculations, we studied the interactions of the long-chain organic cations with the inorganic layers and between each other to assess their stability. Our findings suggest that tin bromide is more inclined toward forming higher-order RP phases or 3D NCs than lead bromide. Furthermore, we demonstrate the synthesis of precisely tuned CsSnBr3 3D NCs (7 and 10 nm) using standard surface ligands. When the 3D and 2D tin halide perovskite nanostructures coexist in suspension, the obtained drop-cast thin films showed the preferential positioning of residual RP nanostructures at the interface with the substrate. This study encourages further exploration of low-dimensional hybrid materials and emphasizes the need for understanding mechanisms to develop efficient synthetic routes for high-quality tin-halide perovskite NCs.
RESUMEN
Lead chalcogenide colloidal quantum dots are one of the most promising materials to revolutionize the field of short-wavelength infrared optoelectronics due to their bandgap tunability and strong absorption. By self-assembling these quantum dots into ordered superlattices, mobilities approaching those of the bulk counterparts can be achieved while still retaining their original optical properties. The recent literature focused mostly on PbSe-based superlattices, but PbS quantum dots have several advantages, including higher stability. In this work, we demonstrate highly ordered 3D superlattices of PbS quantum dots with tunable thickness up to 200 nm and high coherent ordering, both in-plane and along the thickness. We show that we can successfully exchange the ligands throughout the film without compromising the ordering. The superlattices as the active material of an ion gel-gated field-effect transistor achieve electron mobilities up to 220 cm2 V-1 s-1. To further improve the device performance, we performed a postdeposition passivation with PbI2, which noticeably reduced the subthreshold swing making it reach the Boltzmann limit. We believe this is an important proof of concept showing that it is possible to overcome the problem of high trap densities in quantum dot superlattices enabling their application in optoelectronic devices.
RESUMEN
The possibility to engineer (GeTe)m (Sb2 Te3 )n phase-change materials to co-host ferroelectricity is extremely attractive. The combination of these functionalities holds great technological impact, potentially enabling the design of novel multifunctional devices. Here an experimental and theoretical study of epitaxial (GeTe)m (Sb2 Te3 )n with GeTe-rich composition is presented. These layered films feature a tunable distribution of (GeTe)m (Sb2 Te3 )1 blocks of different sizes. Breakthrough evidence of ferroelectric displacement in thick (GeTe)m (Sb2 Te3 )1 lamellae is provided. The density functional theory calculations suggest the formation of a tilted (GeTe)m slab sandwiched in GeTe-rich blocks. That is, the net ferroelectric polarization is confined almost in-plane, representing an unprecedented case between 2D and bulk ferroelectric materials. The ferroelectric behavior is confirmed by piezoresponse force microscopy and electroresistive measurements. The resilience of the quasi van der Waals character of the films, regardless of their composition, is also demonstrated. Hence, the material developed hereby gathers in a unique 2D platform the phase-change and ferroelectric switching properties, paving the way for the conception of innovative device architectures.
RESUMEN
Concurrent structural and electronic transformations in VO2 thin films are of 2-fold importance: enabling fine-tuning of the emergent electrical properties in functional devices, yet creating an intricate interfacial domain structure of transitional phases. Despite the importance of understanding the structure of VO2 thin films, a detailed real-space atomic structure analysis in which the oxygen atomic columns are also resolved is lacking. Moreover, intermediate atomic structures have remained elusive due to the lack of robust atomically resolved quantitative analysis. Here, we directly resolve both V and O atomic columns and discover the presence of intermediate monoclinic (M2) phase nanolayers (less than 2 nm thick) in epitaxially grown VO2 films on a TiO2 (001) substrate, where the dominant part of VO2 undergoes a transition from the tetragonal (rutile) phase to the monoclinic M1 phase. Strain analysis suggests that the presence of the M2 phase is related to local strain gradients near the TiO2/VO2 interface. We unfold the crucial role of imaging the spatial configurations of the oxygen anions (in addition to V cations) by utilizing atomic-resolution electron microscopy. Our approach can be used to unravel the structural transitions in a wide range of correlated oxides, offering substantial implications for, e.g., optoelectronics and ferroelectrics.
RESUMEN
Hydrogen is a promising alternative fuel that can push forward the energy transition because of its high energy density (142 MJ kg-1), variety of potential sources, low weight and low environmental impact, but its storage for automotive applications remains a formidable challenge. MgH2, with its high gravimetric and volumetric density, presents a compelling platform for hydrogen storage; however, its utilization is hindered by the sluggish kinetics of hydrogen uptake/release and high temperature operation. Herein we show that a novel layered heterostructure of reduced graphene oxide and organosilica with high specific surface area and narrow pore size distribution can serve as a scaffold to host MgH2 nanoparticles with a narrow diameter distribution around â¼2.5 nm and superior hydrogen storage properties to bulk MgH2. Desorption studies showed that hydrogen release starts at relatively low temperature, with a maximum at 348 °C and kinetics dependent on particle size. Reversibility tests demonstrated that the dehydrogenation kinetics and re-hydrogenation capacity of the system remains stable at 1.62 wt% over four cycles at 200 °C. Our results prove that MgH2 confinement in a nanoporous scaffold is an efficient way to constrain the size of the hydride particles, avoid aggregation and improve kinetics for hydrogen release and recharging.
RESUMEN
Lead-free, silicon compatible materials showing large electromechanical responses comparable to, or better than conventional relaxor ferroelectrics, are desirable for various nanoelectromechanical devices and applications. Defect-engineered electrostriction has recently been gaining popularity to obtain enhanced electromechanical responses at sub 100 Hz frequencies. Here, we report record values of electrostrictive strain coefficients (M31) at frequencies as large as 5 kHz (1.04×10-14 m2/V2 at 1 kHz, and 3.87×10-15 m2/V2 at 5 kHz) using A-site and oxygen-deficient barium titanate thin-films, epitaxially integrated onto Si. The effect is robust and retained upon cycling upto 6 million times. Our perovskite films are non-ferroelectric, exhibit a different symmetry compared to stoichiometric BaTiO3 and are characterized by twin boundaries and nano polar-like regions. We show that the dielectric relaxation arising from the defect-induced features correlates well with the observed giant electrostriction-like response. These films show large coefficient of thermal expansion (2.36 × 10-5/K), which along with the giant M31 implies a considerable increase in the lattice anharmonicity induced by the defects. Our work provides a crucial step forward towards formulating guidelines to engineer large electromechanical responses even at higher frequencies in lead-free thin films.
RESUMEN
In recent years, phase-change materials have gained importance in nanophotonics and optoelectronics. Sizable optical contrast and added degree of freedom from phase switching drive the use of phase-change materials in various optical devices with outstanding results and potential for real-world applications. The local crystallization/amorphization of phase-change materials and the corresponding reflectance tuning by the crystallized/amorphized region size have potential applications, for example, for future dynamic display devices. Although the resolution is much higher than in current display devices, the pixel sizes in those devices are limited by the locally switchable structure size. Here, the spot sizes are further reduced by using ion beams instead of laser beams, dramatically increasing pixel density, demonstrating superior resolution. In addition, the power to sputter away materials can be utilized in creating nanostructures with relative height differences and local contrast. The experiment focuses on one archetypal phase-change material, Sb2 Se3 , prepared by pulsed-laser deposition on a reflective gold substrate. This study demonstrates that structural colors can be produced and reflectance tuning can be achieved by focused ion beam milling/sputtering of phase-change materials at the nanoscale. Furthermore, the local structuring of phase-change materials by focused ion beam can produce high-pixel-density display devices with superior resolutions.
RESUMEN
Over the past few decades, telluride-based chalcogenide multilayers, such as PbSeTe/PbTe, Bi2Te3/Sb2Te3, and Bi2Te3/Bi2Se3, were shown to be promising high-performance thermoelectric films. However, the stability of performance in operating environments, in particular, influenced by intermixing of the sublayers, has been studied rarely. In the present work, the nanostructure, thermal stability, and thermoelectric power factor of Sb2Te3/Ge1+xTe multilayers prepared by pulsed laser deposition are investigated by transmission electron microscopy and Seebeck coefficient/electrical conductivity measurements performed during thermal cycling. Highly textured Sb2Te3 films show p-type semiconducting behavior with superior power factor, while Ge1+xTe films exhibit n-type semiconducting behavior. The elemental mappings indicate that the as-deposited multilayers have well-defined layered structures. Upon heating to 210 °C, these layer structures are unstable against intermixing of sublayers; nanostructural changes occur on initial heating, even though the highest temperature is close to the deposition temperature. Furthermore, the diffusion is more extensive at domain boundaries leading to locally inclined structures there. The Sb2Te3 sublayers gradually dissolve into Ge1+xTe. This dissolution depends markedly on the relative Ge1+xTe film thickness. Rather, full dissolution occurs rapidly at 210 °C when the Ge1+xTe sublayer is substantially thicker than that of Sb2Te3, whereas the dissolution is very limited when the Ge1+xTe sublayer is substantially thinner. The resulting variations of the nanostructure influence the Seebeck coefficient and electrical conductivity and thus the power factor in a systematic manner. Our results shed light on a previously unreported correlation of the power factor with the nanostructural evolution of unstable telluride multilayers.
RESUMEN
Networks and systems which exhibit brain-like behavior can analyze information from intrinsically noisy and unstructured data with very low power consumption. Such characteristics arise due to the critical nature and complex interconnectivity of the brain and its neuronal network. We demonstrate a system comprising of multilayer hexagonal boron nitride (hBN) films contacted with silver (Ag), which can uniquely host two different self-assembled networks, which are self-organized at criticality (SOC). This system shows bipolar resistive switching between the high resistance state (HRS) and the low resistance state (LRS). In the HRS, Ag clusters (nodes) intercalate in the van der Waals gaps of hBN forming a network of tunnel junctions, whereas the LRS contains a network of Ag filaments. The temporal avalanche dynamics in both these states exhibit power-law scaling, long-range temporal correlation, and SOC. These networks can be tuned from one to another with voltage as a control parameter. For the first time, two different neural networks are realized in a single CMOS compatible, 2D material platform.