Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Mol Life Sci ; 79(4): 220, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35368213

RESUMEN

During angiogenesis, endothelial cells form protrusive sprouts and migrate towards the angiogenic stimulus. In this study, we investigate the role of the endoplasmic reticulum (ER)-anchored protein, Protrudin, in endothelial cell protrusion, migration and angiogenesis. Our results demonstrate that Protrudin regulates angiogenic tube formation in primary endothelial cells, Human umbilical vein endothelial cells (HUVECs). Analysis of RNA sequencing data and its experimental validation revealed cell migration as a prominent cellular function affected in HUVECs subjected to Protrudin knockdown. Further, our results demonstrate that knockdown of Protrudin inhibits focal adhesion kinase (FAK) activation in HUVECs and human aortic endothelial cells (HAECs). This is associated with a loss of polarized phospho-FAK distribution upon Protrudin knockdown as compared to Protrudin expressing HUVECs. Reduction of Protrudin also results in a perinuclear accumulation of mTOR and a decrease in VEGF-mediated S6K activation. However, further experiments suggest that the observed inhibition of angiogenesis in Protrudin knockdown cells is not affected by mTOR disturbance. Therefore, our findings suggest that defects in FAK activation and its abnormal subcellular distribution upon Protrudin knockdown are associated with a detrimental effect on endothelial cell migration and angiogenesis. Furthermore, mice with global Protrudin deletion demonstrate reduced retinal vascular progression. To conclude, our results provide evidence for a novel key role of Protrudin in endothelial cell migration and angiogenesis.


Asunto(s)
Neovascularización Patológica , Neovascularización Fisiológica , Animales , Movimiento Celular/genética , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Neovascularización Patológica/genética , Neovascularización Fisiológica/genética , Proteínas de Transporte Vesicular
2.
FASEB J ; 34(11): 14671-14694, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32914503

RESUMEN

Oxysterol-binding protein-related protein 2 (ORP2), a cholesterol-PI(4,5)P2 countercurrent transporter, was recently identified as a novel regulator of plasma membrane (PM) cholesterol and PI(4,5)P2 content in HeLa cells. Here, we investigate the role of ORP2 in endothelial cell (EC) cholesterol and PI(4,5)P2 distribution, angiogenic signaling, and angiogenesis. We show that ORP2 knock-down modifies the distribution of cholesterol accessible to a D4H probe, between late endosomes and the PM. Depletion of ORP2 from ECs inhibits their angiogenic tube formation capacity, alters the gene expression of angiogenic signaling pathways such as VEGFR2, Akt, mTOR, eNOS, and Notch, and reduces EC migration, proliferation, and cell viability. We show that ORP2 regulates the integrity of VEGFR2 at the PM in a cholesterol-dependent manner, the depletion of ORP2 resulting in proteolytic cleavage by matrix metalloproteinases, and reduced activity of VEGFR2 and its downstream signaling. We demonstrate that ORP2 depletion increases the PM PI(4,5)P2 coincident with altered F-actin morphology, and reduces both VEGFR2 and cholesterol in buoyant raft membranes. Moreover, ORP2 knock-down suppresses the expression of the lipid raft-associated proteins VE-cadherin and caveolin-1. Analysis of the retinal microvasculature in ORP2 knock-out mice generated during this study demonstrates the subtle alterations of morphology characterized by reduced vessel length and increased density of tip cells and perpendicular sprouts. Gene expression changes in the retina suggest disturbance of sterol homeostasis, downregulation of VE-cadherin, and a putative disturbance of Notch signaling. Our data identifies ORP2 as a novel regulator of EC cholesterol and PI(4,5)P2 homeostasis and cholesterol-dependent angiogenic signaling.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica , Receptores de Esteroides/metabolismo , Transducción de Señal , Actinas/metabolismo , Antígenos CD/metabolismo , Cadherinas/metabolismo , Caveolinas/metabolismo , Membrana Celular/metabolismo , Movimiento Celular , Endosomas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Metaloproteinasas de la Matriz/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Notch/metabolismo , Receptores de Esteroides/genética , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
3.
FASEB J ; 32(3): 1281-1295, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29092904

RESUMEN

ORP2 is implicated in cholesterol transport, triglyceride metabolism, and adrenocortical steroid hormone production. We addressed ORP2 function in hepatocytes by generating ORP2-knockout (KO) HuH7 cells by CRISPR-Cas9 gene editing, followed by analyses of transcriptome, F-actin morphology, migration, adhesion, and proliferation. RNA sequencing of ORP2-KO cells revealed >2-fold changes in 579 mRNAs. The Ingenuity Pathway Analysis (IPA) uncovered alterations in the following functional categories: cellular movement, cell-cell signaling and interaction, cellular development, cellular function and maintenance, cellular growth and proliferation, and cell morphology. Many pathways in these categories involved actin cytoskeleton, cell migration, adhesion, or proliferation. Analysis of the ORP2 interactome uncovered 109 putative new partners. Their IPA analysis revealed Ras homolog A (RhoA) signaling as the most significant pathway. Interactions of ORP2 with SEPT9, MLC12, and ARHGAP12 were validated by independent assays. ORP2-KO resulted in abnormal F-actin morphology characterized by impaired capacity to form lamellipodia, migration defect, and impaired adhesion and proliferation. Rescue of the migration phenotype and generation of typical cell surface morphology required an intact ORP2 phosphoinositide binding site, suggesting that ORP2 function involves phosphoinositide binding and transport. The results point at a novel function of ORP2 as a lipid-sensing regulator of the actin cytoskeleton, with impacts on hepatocellular migration, adhesion, and proliferation.-Kentala, H., Koponen, A., Kivelä, A. M., Andrews, R., Li, C., Zhou, Y., Olkkonen, V. M. Analysis of ORP2-knockout hepatocytes uncovers a novel function in actin cytoskeletal regulation.


Asunto(s)
Citoesqueleto de Actina/fisiología , Movimiento Celular , Hepatocitos/fisiología , Receptores de Esteroides/metabolismo , Sistemas CRISPR-Cas , Adhesión Celular , Proliferación Celular , Técnicas de Inactivación de Genes , Hepatocitos/citología , Humanos , Receptores de Esteroides/genética , Transducción de Señal
4.
Cell Mol Life Sci ; 75(21): 4041-4057, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29947926

RESUMEN

ORP2 is a ubiquitously expressed OSBP-related protein previously implicated in endoplasmic reticulum (ER)-lipid droplet (LD) contacts, triacylglycerol (TG) metabolism, cholesterol transport, adrenocortical steroidogenesis, and actin-dependent cell dynamics. Here, we characterize the role of ORP2 in carbohydrate and lipid metabolism by employing ORP2-knockout (KO) hepatoma cells (HuH7) generated by CRISPR-Cas9 gene editing. The ORP2-KO and control HuH7 cells were subjected to RNA sequencing, analyses of Akt signaling, carbohydrate and TG metabolism, the extracellular acidification rate, and the lipidome, as well as to transmission electron microscopy. The loss of ORP2 resulted in a marked reduction of active phosphorylated Akt(Ser473) and its target Glycogen synthase kinase 3ß(Ser9), consistent with defective Akt signaling. ORP2 was found to form a physical complex with the key controllers of Akt activity, Cdc37, and Hsp90, and to co-localize with Cdc37 and active Akt(Ser473) at lamellipodial plasma membrane regions, in addition to the previously reported ER-LD localization. ORP2-KO reduced glucose uptake, glycogen synthesis, glycolysis, mRNA-encoding glycolytic enzymes, and SREBP-1 target gene expression, and led to defective TG synthesis and storage. ORP2-KO did not reduce but rather increased ER-LD contacts under basal culture conditions and interfered with their expansion upon fatty acid loading. Together with our recently published work (Kentala et al. in FASEB J 32:1281-1295, 2018), this study identifies ORP2 as a new regulatory nexus of Akt signaling, cellular energy metabolism, actin cytoskeletal function, cell migration, and proliferation.


Asunto(s)
Transporte Biológico/genética , Metabolismo Energético/genética , Proteínas Proto-Oncogénicas c-akt/genética , Receptores de Esteroides/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular , Movimiento Celular/genética , Proliferación Celular/genética , Chaperoninas/genética , Técnicas de Inactivación de Genes , Proteínas HSP90 de Choque Térmico , Humanos , Metabolismo de los Lípidos/genética , Orgánulos/genética , Orgánulos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , Transducción de Señal/genética
5.
Cell Rep Methods ; 3(8): 100565, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37671026

RESUMEN

We present a miniaturized immunofluorescence assay (mini-IFA) for measuring antibody response in patient blood samples. The method utilizes machine learning-guided image analysis and enables simultaneous measurement of immunoglobulin M (IgM), IgA, and IgG responses against different viral antigens in an automated and high-throughput manner. The assay relies on antigens expressed through transfection, enabling use at a low biosafety level and fast adaptation to emerging pathogens. Using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the model pathogen, we demonstrate that this method allows differentiation between vaccine-induced and infection-induced antibody responses. Additionally, we established a dedicated web page for quantitative visualization of sample-specific results and their distribution, comparing them with controls and other samples. Our results provide a proof of concept for the approach, demonstrating fast and accurate measurement of antibody responses in a research setup with prospects for clinical diagnostics.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Prueba de COVID-19 , Aclimatación , Aprendizaje Automático
6.
Biosens Bioelectron ; 168: 112510, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32877783

RESUMEN

Extracellular vesicles (EVs) have the ability to function as molecular vehicles and could therefore be harnessed to deliver drugs to target cells in diseases such as cancer. The composition of EVs determines their function as well as their interactions with cells, which consequently affects the cell uptake efficacy of EVs. In this study, we present two novel label-free approaches for studying EVs; characterization of EV composition by time-gated surface-enhanced Raman spectroscopy (TG-SERS) and monitoring the kinetics and amount of cellular uptake of EVs by surface plasmon resonance (SPR) in real-time. Using these methods, we characterized the most abundant EVs of human blood, red blood cell (RBC)- and platelet (PLT)-derived EVs and studied their interactions with prostate cancer cells. Complementary studies were performed with nanoparticle tracking analysis for concentration and size determinations of EVs, zeta potential measurements for surface charge analysis, and fluorophore-based confocal imaging and flow cytometry to confirm EV uptake. Our results revealed distinct biochemical features between the studied EVs and demonstrated that PLT-derived EVs were more efficiently internalized by PC-3 cells than RBC-derived EVs. The two novel label-free techniques introduced in this study were found to efficiently complement conventional techniques and paves the way for further use of TG-SERS and SPR in EV studies.


Asunto(s)
Técnicas Biosensibles , Vesículas Extracelulares , Nanopartículas , Humanos , Masculino , Espectrometría Raman , Resonancia por Plasmón de Superficie
7.
J Steroid Biochem Mol Biol ; 192: 105298, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30716465

RESUMEN

Oxysterol-binding protein (OSBP)-related proteins (ORPs) constitute a family of intracellular lipid-binding/transport proteins (LTPs) in eukaryotes. They typically have a modular structure comprising a lipid-binding domain and membrane targeting determinants, being thus suited for function at membrane contact sites. Among the mammalian ORPs, ORP2/OSBPL2 is the only member that only exists as a 'short' variant lacking a membrane-targeting pleckstrin homology domain. ORP2 is expressed ubiquitously and has been assigned a multitude of functions. Its OSBP-related domain binds cholesterol, oxysterols, and phosphoinositides, and its overexpression enhances cellular cholesterol efflux. Consistently, the latest observations suggest a function of ORP2 in cholesterol transport to the plasma membrane (PM) in exchange for phosphatidylinositol 4,5-bisphosphate (PI4,5P2), with significant impacts on the concentrations of PM cholesterol and PI4,5P2. On the other hand, ORP2 localizes at the surface of cytoplasmic lipid droplets (LDs) and at endoplasmic-reticulum-LD contact sites, and its depletion modifies cellular triglyceride (TG) metabolism. Study in an adrenocortical cell line further suggested a function of ORP2 in the synthesis of steroid hormones. Our recent knock-out of ORP2 in human hepatoma cells revealed its function in hepatocellular PI3K/Akt signaling, glucose and triglyceride metabolism, as well as in actin cytoskeletal regulation, cell adhesion, migration and proliferation. ORP2 was shown to interact physically with F-actin regulators such as DIAPH1, ARHGAP12, SEPT9 and MLC12, as well as with IQGAP1 and the Cdc37-Hsp90 chaperone complex controlling the activity of Akt. Interestingly, mutations in OSBPL2 encoding ORP2 are associated with autosomal dominant non-syndromic hearing loss, and the protein was found to localize in cochlear hair cell stereocilia. The functions assigned to ORP2 suggest that this protein, in concert with other LTPs, controls the subcellular distribution of cholesterol in various cell types and steroid hormone synthesis in adrenocortical cells. However, it also impacts cellular TG and carbohydrate metabolism and F-actin-dependent functions, revealing a bewildering spectrum of activities.


Asunto(s)
Actinas/metabolismo , Metabolismo de los Hidratos de Carbono , Metabolismo de los Lípidos , Receptores de Esteroides/metabolismo , Transducción de Señal , Transporte Biológico , Humanos
8.
Biochimie ; 158: 90-101, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30590084

RESUMEN

ORP2 is a sterol-binding protein with documented functions in lipid and glucose metabolism, Akt signaling, steroidogenesis, cell adhesion, migration and proliferation. Here we investigate the interactions of ORP2 with phosphoinositides (PIPs) by surface plasmon resonance (SPR), its affinity for cholesterol with a pull-down assay, and its capacity to transfer sterol in vitro. Moreover, we determine the effects of wild-type (wt) ORP2 and a mutant with attenuated PIP binding, ORP2(mHHK), on the subcellular distribution of cholesterol, and analyze the interaction of ORP2 with the related cholesterol transporter ORP1L. ORP2 showed specific affinity for PI(4,5)P2, PI(3,4,5)P3 and PI(4)P, with suggestive Kd values in the µM range. Also binding of cholesterol by ORP2 was detectable, but a Kd could not be determined. Wt ORP2 was in HeLa cells mainly detected in the cytosol, ER, late endosomes, and occasionally on lipid droplets (LDs), while ORP2(mHHK) displayed an enhanced LD localization. Overexpression of wt ORP2 shifted the D4H cholesterol probe away from endosomes, while ORP2(mHHK) caused endosomal accumulation of the probe. Although ORP2 failed to transfer dehydroergosterol in an in vitro assay where OSBP is active, its knock-down resulted in the accumulation of cholesterol in late endocytic compartments, as detected by both D4H and filipin probes. Interestingly, ORP2 was shown to interact and partially co-localize on late endosomes with ORP1L, a cholesterol transporter/sensor at ER-late endosome junctions. Our data demonstrates that ORP2 binds several phosphoinositides, both PI(4)P and multiply phosphorylated species. ORP2 regulates the subcellular distribution of cholesterol dependent on its PIP-binding capacity. The interaction of ORP2 with ORP1L suggests a concerted action of the two ORPs.


Asunto(s)
Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Gotas Lipídicas/metabolismo , Fosfatidilinositoles/metabolismo , Receptores de Esteroides/metabolismo , Colesterol/genética , Retículo Endoplásmico/genética , Endosomas/genética , Células HeLa , Humanos , Fosfatidilinositoles/genética , Receptores de Esteroides/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA