Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Pharmacology ; 101(1-2): 54-63, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28988245

RESUMEN

BACKGROUND/AIMS: 2-aminoethyl nitrate (CLC-1011) is a member of the class of organic nitrates that cause vasodilation by the generation of nitric oxide (•NO). These drugs are mainly used for the treatment of angina pectoris and ischemic heart disease. The aim of this study was to characterize the vasodilatory potency of this organic nitrate alone and in combination with clinically established cardiovascular drugs. METHODS: Vasodilation by CLC-1011 was tested by isometric tension studies, either alone or combined with cilostazol, valsartan, and metoprolol. Induction of oxidative stress in isolated heart mitochondria was measured by enhanced chemiluminescence. Bioactivation of CLC-1011 in aortic tissue was measured by electron paramagnetic resonance spectroscopy using an iron-based spin trap for •NO. RESULTS: We observed potent vasodilation by CLC-1011 and additive effects for all three drug combinations. In contrast to nitroglycerin (GTN), CLC-1011 did not stimulate mitochondrial oxidative stress. CLC-1011 was bioactivated to •NO in aortic tissue. CONCLUSION: In summary, the experiments described in this report demonstrate that CLC-1011 does not induce oxidative stress, is a more potent vasodilator than isosorbide-5-mononitrate and dinitrate ISDN, and displays synergistic vasodilation with other cardiovascular drugs. CLC-1011 fixed dose combinations could be used in the management of cardiovascular diseases.


Asunto(s)
Aorta/efectos de los fármacos , Metoprolol/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Nitratos/farmacología , Tetrazoles/farmacología , Valsartán/farmacología , Vasodilatadores/farmacología , Animales , Aorta/fisiología , Cilostazol , Combinación de Medicamentos , Sinergismo Farmacológico , Masculino , Mitocondrias Cardíacas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar
2.
PLoS One ; 14(9): e0222293, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31527880

RESUMEN

In the area of laser material processing, versatile applications for cutting glasses and transparent polymers exist. However, parasitic effects such as the creation of step-like structures appear when laser cutting inside a transparent material. To date, these structures were only described empirically. This work establishes the physical and chemical mechanisms behind the observed effects and describes the influence of process and material parameters onto the creation of step-like structures in hydrogel, Dihydroxyethylmethacrylat (HEMA). By focusing laser pulses in HEMA, reduced pulse separation distance below 50 nm and rise in pulse energy enhances the creation of unintended step-like structures. Spatial resolved Raman-spectroscopy was used to measure the laser induced chemical modification, which results into a reduced breakdown threshold. The reduction in threshold influences the position of optical breakdown for the succeeding laser pulses and consequently leads to the step-like structures. Additionally, the experimental findings were supplemented with numerical simulations of the influence of reduced damage threshold onto the position of optical breakdown. In summary, chemical material change was defined as cause of the step-like structures. Furthermore, the parameters to avoid these structures were identified.


Asunto(s)
Hidrogeles/química , Rayos Láser , Luz , Espectrometría Raman/métodos
3.
Br J Pharmacol ; 174(12): 1620-1632, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27435156

RESUMEN

BACKGROUND AND PURPOSE: Excessive inflammation in sepsis causes microvascular thrombosis and thrombocytopenia associated with organ dysfunction and high mortality. The present studies aimed to investigate whether inhibition of dipeptidyl peptidase-4 (DPP-4) and supplementation with glucagon-like peptide-1 (GLP-1) receptor agonists improved endotoxaemia-associated microvascular thrombosis via immunomodulatory effects. EXPERIMENTAL APPROACH: Endotoxaemia was induced in C57BL/6J mice by a single injection of LPS (17.5 mg kg-1 for survival and 10 mg kg-1 for all other studies). For survival studies, treatment was started 6 h after LPS injection. For all other studies, drugs were injected 48 h before LPS treatment. KEY RESULTS: Mice treated with LPS alone showed severe thrombocytopenia, microvascular thrombosis in the pulmonary circulation (fluorescence imaging), increased LDH activity, endothelial dysfunction and increased markers of inflammation in aorta and whole blood (leukocyte-dependent oxidative burst, nitrosyl-iron haemoglobin, a marker of nitrosative stress, and expression of inducible NOS). Treatment with the DPP-4 inhibitor linagliptin or the GLP-1 receptor agonist liraglutide, as well as genetic deletion of DPP-4 (DPP4-/- mice) improved all these parameters. In GLP-1 receptor-deficient mice, both linagliptin and liraglutide lost their beneficial effects and improvement of prognosis. Incubation of platelets and cultured monocytes (containing GLP-1 receptor protein) with GLP-1 receptor agonists inhibited the monocytic oxidative burst and platelet activation, with a GLP-1 receptor-dependent elevation of cAMP levels and PKA activation. CONCLUSIONS AND IMPLICATIONS: GLP-1 receptor activation in platelets by linagliptin and liraglutide strongly attenuated endotoxaemia-induced microvascular thrombosis and mortality by a cAMP/PKA-dependent mechanism, preventing systemic inflammation, vascular dysfunction and end organ damage. LINKED ARTICLES: This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.


Asunto(s)
Endotoxemia/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Microvasos/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal , Trombosis de la Vena/metabolismo , Animales , Dipeptidil Peptidasa 4/deficiencia , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Endotoxemia/inducido químicamente , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/deficiencia , Lipopolisacáridos/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microvasos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Activación Plaquetaria/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Trombosis de la Vena/inducido químicamente
4.
Redox Biol ; 13: 370-385, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28667906

RESUMEN

Hyperglycemia associated with inflammation and oxidative stress is a major cause of vascular dysfunction and cardiovascular disease in diabetes. Recent data reports that a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), empagliflozin (Jardiance®), ameliorates glucotoxicity via excretion of excess glucose in urine (glucosuria) and significantly improves cardiovascular mortality in type 2 diabetes mellitus (T2DM). The overarching hypothesis is that hyperglycemia and glucotoxicity are upstream of all other complications seen in diabetes. The aim of this study was to investigate effects of empagliflozin on glucotoxicity, ß-cell function, inflammation, oxidative stress and endothelial dysfunction in Zucker diabetic fatty (ZDF) rats. Male ZDF rats were used as a model of T2DM (35 diabetic ZDF-Leprfa/fa and 16 ZDF-Lepr+/+ controls). Empagliflozin (10 and 30mg/kg/d) was administered via drinking water for 6 weeks. Treatment with empagliflozin restored glycemic control. Empagliflozin improved endothelial function (thoracic aorta) and reduced oxidative stress in the aorta and in blood of diabetic rats. Inflammation and glucotoxicity (AGE/RAGE signaling) were epigenetically prevented by SGLT2i treatment (ChIP). Linear regression analysis revealed a significant inverse correlation of endothelial function with HbA1c, whereas leukocyte-dependent oxidative burst and C-reactive protein (CRP) were positively correlated with HbA1c. Viability of hyperglycemic endothelial cells was pleiotropically improved by SGLT2i. Empagliflozin reduces glucotoxicity and thereby prevents the development of endothelial dysfunction, reduces oxidative stress and exhibits anti-inflammatory effects in ZDF rats, despite persisting hyperlipidemia and hyperinsulinemia. Our preclinical observations provide insights into the mechanisms by which empagliflozin reduces cardiovascular mortality in humans (EMPA-REG trial).


Asunto(s)
Compuestos de Bencidrilo/uso terapéutico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Glucósidos/uso terapéutico , Hipoglucemiantes/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/metabolismo , Compuestos de Bencidrilo/farmacología , Proteína C-Reactiva/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Glucosa/metabolismo , Glucósidos/farmacología , Hemoglobina Glucada/metabolismo , Hipoglucemiantes/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Estrés Oxidativo , Ratas , Ratas Zucker , Transportador 2 de Sodio-Glucosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA